64 research outputs found

    Effect of laser intensity on the determination of intermolecular electron transfer rate constants - Observation of Marcus inverted region in photoinduced back electron transfer reactions

    Get PDF
    The light intensity and concentration dependence of the photoproduct yield are investigated in a monophotonic process. The relationship of the photoproduct yield with the laser intensity and the complex concentration for a monophotonic process is derived under laser flash photolysis. The relationship is confirmed experimentally in a monophotonic process, i.e., triplet-triplet transition for a Cu(I) complex Cu6(DMNSN′)6 (DMNSN′=4,6-dimethylpyrimidine-2-thiolate). At low light intensity, the relationship can be approximated by a linear inverse square root dependence on the light intensity. Based on this equation, a method is proposed to determine the intrinsic back electron transfer rate constant kET b in photoinduced intermolecular electron transfer reactions, precluding the effect from the diffusional encounter pairs. The Marcus "inverted region" is observed by using the method in photoinduced back electron transfer reactions of [Au2(dppm)2](ClO4)2 (dppm=bis(diphenylphosphino)methane) with a series of substituted pyridinium acceptors. © 1998 American Institute of Physics.published_or_final_versio

    Functional antioxidant and tyrosinase inhibitory properties of extracts of Taiwanese pummelo (Citrus grandis Osbeck)

    Get PDF
    In recent years, the overproduction of citrus fruits has resulted in an unnecessary increase in agricultural wastes in Taiwan. In an attempt to find an application for these potentially valuable wastes, we evaluated the antioxidant and whitening properties of six Taiwanese pummelo varieties (Miyu Shihtouyu Taipeiyu Touyu Wentan and Hsishihyu). The methanolic extract of Citrus grandis Osbeck Miyu (Miyu) had the highest phenolic content (9.99 mg of gallic acid equivalent/g). C. grandis Osbeck Shihtouyu (Shihtouyu) displayed the highest 2, 2-azino-bis-(3- ethylbenzthiazoline-6-sulfonic acid) content (9.3 mg trolox equivalent antioxidant content/g), indicating its good free radical-scavenging activity. C. grandis Osbeck Taipeiyu (Taipeiyu) showed the highest 1,1-diphenyl-2-picrylhydrazyl content and this compound too possesses good radical-scavenging activity. The ferrous-ion chelating effect of C. grandis Osbeck Touyu (Touyu) and C. grandis Osbeck Wentan (Wentan) was found to be 0.78 and 0.92 mg/ml, respectively. Taipeiyu showed the highest limonin content (1251.86 μg/ml). Touyu inhibited tyrosinase up to 90.8% (10 mg/ml), which was almost similar to the 95% inhibition shown by kojic acid (10 mg/ml). Thus, the components of pummelo have high potential for use as ingredients in products that prevent skin pigmentation. These results indicate that the methanolic extracts and the phytochemicals derived from pummelo are potential natural antioxidant agents.Key words: Antioxidant, free radical chelating, limonin, pummelo, tyrosinase

    Differential Localization and Independent Acquisition of the H3K9me2 and H3K9me3 Chromatin Modifications in the Caenorhabditis elegans Adult Germ Line

    Get PDF
    Histone methylation is a prominent feature of eukaryotic chromatin that modulates multiple aspects of chromosome function. Methyl modification can occur on several different amino acid residues and in distinct mono-, di-, and tri-methyl states. However, the interplay among these distinct modification states is not well understood. Here we investigate the relationships between dimethyl and trimethyl modifications on lysine 9 of histone H3 (H3K9me2 and H3K9me3) in the adult Caenorhabditis elegans germ line. Simultaneous immunofluorescence reveals very different temporal/spatial localization patterns for H3K9me2 and H3K9me3. While H3K9me2 is enriched on unpaired sex chromosomes and undergoes dynamic changes as germ cells progress through meiotic prophase, we demonstrate here that H3K9me3 is not enriched on unpaired sex chromosomes and localizes to all chromosomes in all germ cells in adult hermaphrodites and until the primary spermatocyte stage in males. Moreover, high-copy transgene arrays carrying somatic-cell specific promoters are highly enriched for H3K9me3 (but not H3K9me2) and correlate with DAPI-faint chromatin domains. We further demonstrate that the H3K9me2 and H3K9me3 marks are acquired independently. MET-2, a member of the SETDB histone methyltransferase (HMTase) family, is required for all detectable germline H3K9me2 but is dispensable for H3K9me3 in adult germ cells. Conversely, we show that the HMTase MES-2, an E(z) homolog responsible for H3K27 methylation in adult germ cells, is required for much of the germline H3K9me3 but is dispensable for H3K9me2. Phenotypic analysis of met-2 mutants indicates that MET-2 is nonessential for fertility but inhibits ectopic germ cell proliferation and contributes to the fidelity of chromosome inheritance. Our demonstration of the differential localization and independent acquisition of H3K9me2 and H3K9me3 implies that the trimethyl modification of H3K9 is not built upon the dimethyl modification in this context. Further, these and other data support a model in which these two modifications function independently in adult C. elegans germ cells

    Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetically engineered mouse models of mammary gland cancer enable the <it>in vivo </it>study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue.</p> <p>Methods</p> <p>We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging.</p> <p>Results</p> <p>In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice.</p> <p>Conclusion</p> <p>In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary.</p

    Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    Get PDF
    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells

    Neoadjuvant treatment of pancreatic adenocarcinoma: a systematic review and meta-analysis of 5520 patients

    Full text link

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe

    Developing An Analytic Model of Success for Acquisition Decision Making

    Get PDF
    Naval Postgraduate School Acquisition Research Progra
    corecore