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The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop

resistance that might be overcome with drug combinations. However, the number of possible

combinations is vast, necessitating data-driven approaches to find optimal patient-specific

treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of

11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell

lines, and results of a DREAM Challenge to evaluate computational strategies for predicting

synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive

methodological development and benchmarking. Winning methods incorporate prior

knowledge of drug-target interactions. Synergy is predicted with an accuracy matching bio-

logical replicates for >60% of combinations. However, 20% of drug combinations are poorly

predicted by all methods. Genomic rationale for synergy predictions are identified, including

ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to

synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
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Personalized treatment matching targeted drugs to a tumor’s
genetics has resulted in remarkable responses. Unfortu-
nately, most patients’ tumors develop resistance leading to

disease relapse. There are multiple mechanisms that may lead
to drug resistance1 that include genetic and non-genetic hetero-
geneity inherent in advanced cancers, coupled with complex
feedback and regulatory mechanisms, and dynamic interactions
between tumor cells and their microenvironment. Any single
therapy may be limited in its effectiveness, but drug combinations
are hypothesized to potentially overcome drug resistance and lead
to more durable responses in patients. The molecular makeup of
cancer cells and the mechanisms driving resistance will influence
the optimal combination of mechanisms to target1–3.

High-throughput preclinical approaches are crucial to deter-
mine and evaluate effective combination strategies. While
empirical experiments are important for observing potential
synergistic properties across drug pairs, the possible number of
combinations grows exponentially with the number of drugs
under consideration. This is further complicated by the influence
of disease and cellular contexts, rendering it impractical to cover
all possibilities with undirected experimental screens4. Compu-
tational approaches for predicting drug synergy are critical to
guide experimental approaches for discovery of rational combi-
nation therapy5.

A number of approaches have been developed to model drug
combination synergy using chemical, biological, and molecular
data from cancer cell lines6,7 but with limited translatability to the
clinic. A key bottleneck in the development of such models has
been a lack of public data of sufficient size and variety to train
computational approaches4,8, particularly considering the diver-
sity of biological mechanisms that may influence drug response.
A further limit to the translatability of many computational
approaches is their reliance on data features that may not be
present during the course of patient care, such as on-treatment
tumor molecular profiles.

To accelerate the understanding of drug combination synergy,
Dialog for Reverse Engineering Assessments and Methods
(DREAM) Challenges partnered with AstraZeneca and the Sanger
Institute to launch the AstraZeneca-Sanger Drug Combination
Prediction DREAM Challenge. DREAM Challenges (dreamchal-
lenges.org[www.dreamchallenges.org]) are collaborative compe-
titions that pose important biomedical questions to the scientific
community, and evaluate participants’ predictions in a statisti-
cally rigorous and unbiased way, emphasizing model reproduci-
bility, and methodological transparency9.

This Challenge was designed to explore fundamental traits that
underlie effective combination treatments and synergistic drug
behavior. Specifically, it was structured to address the following
translational questions using data available prior to drug treat-
ment (mirroring a clinically relevant scenario to direct ther-
apeutic choice): [i] how to predict whether a known (previously
tested) drug combination will be effective for a specific patient;
[ii] how to predict which new (untested) drug combinations are
likely to yield synergistic behaviors in a patient population; and
[iii] how to identify novel biomarkers that may help reveal
underlying mechanisms related to drug synergy.

We shared with the scientific community 11,576 experimen-
tally tested drug combinations on 85 cancer cell lines. Molecular
data was provided for the untreated (baseline) cell lines, alongside
chemical information for the respective drugs. Participants used
the described data to train and test models, and were encouraged
to extend computational techniques to leverage a priori knowl-
edge of cellular signaling networks.

In this manuscript, we report on the results of this Challenge
where we have identified novel and performant methods using a
rigorous evaluation framework on previously unpublished data.

We describe the details of these approaches, as well as general
trends arising from the meta-analysis of all submissions. The full
dataset, along with methods and scoring functions, are freely
provided to the research community, and available to benchmark
future algorithms in the field. Finally, we describe putative
mechanistic models derived from the observed predictive features
underlying synergistic responses, particularly between receptor
tyrosine kinase and PI3K/AKT pathway inhibitors.

Results
A large high-throughput drug combination screen. We collated
a combinatorial drug sensitivity screen comprising 11,576
experiments each measured in a 6-by-6 dose matrix (Methods)
across 85 cancer cell lines. A synergy and an antagonism dis-
tribution (Loewe reference model10,11) were calculated and
summarized via a single score for each experimental matrix
(Methods; Supplementary Fig. 1 and Supplementary Data 1). The
resulting dataset included highly reproducible cell viability
response measurements and synergy scores for 910 pairwise
combinations of 118 drugs (Supplementary Fig. 2 and Methods),
plus information on the drugs including putative drug targets and
their chemical properties. We also integrated deep molecular
characterization of these same cell lines, including somatic
mutations, copy-number alterations, DNA methylation, and gene
expression profiles (Fig. 1a–c) measured before drug treatment12.

The 85 cell lines were predominantly derived from tumors of
the breast (N= 34), lung (N= 22), bladder (N= 14), and the
gastrointestinal tract (N= 12) (Fig. 1d). Drug synergy score
distributions varied across disease types (Fig. 1d); in particular
lung cell lines had over twofold higher mean synergy than breast
cell lines (t-test P= 7e-27). Of the 118 drugs tested, 59 were
targeted therapies against components of oncogenic signaling
pathways (Methods), 15 of which target receptor tyrosine kinases
(RTKs), 22 target PI3K/AKT signaling, and 9 target MAPK
signaling (Fig. 1e, f). Across the pairwise drug combination
experiments, 88% (N= 797) of the unique pairs had drug targets
within the same signaling pathway and demonstrated markedly
overall higher synergy scores (average of 17.3 vs. 7.3, t-test P=
2e–18) than the remaining 12% (N= 113) whose drug targets
were defined to be in distinct pathways. As part of the Challenge
design, we ensured that drug targeted pathways and cancer types
were proportionally distributed across sub-challenges and train-
ing/test datasets (Fig. 1g). Sparsity in the cell line drug
combination data matrix (Fig. 1g) resulted as several drug
combinations were selectively profiled in clinically relevant cancer
cell lines, e.g., ESR1 inhibitors were predominantly combined
with other drugs in estrogen receptor-positive breast cancer cell
lines since these agents are standard of care within this cancer
subtype.

Comparison of AZ-DREAM to published combination screens.
We compared the AstraZeneca-DREAM (AZ-DREAM) challenge
dataset with the independently published in vitro combination
screening studies by O’Neil et al.4 and ALMANAC13. All three
studies used different experimental designs and protocols (Fig. 2a
and Supplementary Table 1), with AZ-DREAM exploring screens
with a 5-by-5 concentration titration format, O’Neill et al.4 a 4-
by-4 format, and ALMANAC a 3-by-3 format. The overlap is
limited in cell lines, targets and drugs explored: 10 cells and 7
targets, 4 drugs and 0 combination-cell pairs shared between AZ-
DREAM and O’Neil et al.4; and 15 cells, 28 targets, 19 drugs, and
10 combination-cell pairs shared between AZ-DREAM and
ALMANAC. AZ-DREAM provides greater coverage of targeted
agents and greater numbers of cell lines per tumor type (Sup-
plementary Table 1).
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For the AZ-DREAM and ALMANAC comparison, only nine
experiments passing quality control (Supplementary Methods)
had the same combination tested in the same cell line, comprising
gefitinib combined with either tamoxifen, fulvestrant, vorinostat,
crizotinib, or everolimus, and tested in two breast cancer cell lines
(MCF7 or T47D). Encouragingly, all but one experiment were
concordantly identified synergistic with the same effect signs seen

in AZ-DREAM and ALMANAC (Fig. 2b). Within the nine
overlapping experiments, 38 titrations were identically used by
both ALMANAC and AZ-DREAM (Supplementary Fig. 3 and
Supplementary Fig. 4a). For these 38 titrations we observed a
correlation >0.7 (Fig. 2c and P < 10−7, test for association)
between cell viability measures from AZ-DREAM and ALMA-
NAC, maintained for individual combinations and cell lines
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where the number of data points was sufficient (Supplementary
Fig. 4).

While there were ten cell lines and four drugs found in both
AZ-DREAM and O’Neil et al.4, no combination-cell experiment
was shared between those two screens. O’Neill et al.4 data
displayed lower dispersion of synergy scores (Supplementary
Fig. 2c, d) and fewer instances of extreme synergy scores. The
technical reproducibility within these screens, however, was
comparable, with a similar correlation observed between
replicated experiments (Spearman= 0.63 for O'Neil et al.,4

Spearman= 0.56 for AZ-DREAM).
We derived a RECIST-like response measure from the AZ-

DREAM in vitro data (see Methods) to enable comparison to
in vivo response metrics for the eight overlapping combinations
in patient-derived tumor xenograft (PDX) models published by
Gao et al.8 (Supplementary Data 1 and Supplementary Fig. 5a).
We compared the % PDX models with synergy in Gao et al.4,8 to
the % cell lines with synergy in AZ-DREAM. A concordant trend
was observed (Pearson r= 0.34, P= 0.42; Methods; Supplemen-
tary Fig. 5b), although too few combinations were shared between
the datasets to conclude with statistical confidence.

Benchmarking of methods reveal high prediction accuracy. The
Challenge was divided into two primary sub-challenges. In sub-
challenge 1 (SC1) participants were asked to predict continuous
synergy scores for drug combinations for which training data
on those same combinations were available. In sub-challenge 2
(SC2), participants were asked to predict binary synergy status
on drug combinations for which no training data was provided,
thereby requiring participants to infer synergy using transferable
data/knowledge patterns identified from previously seen

independent drug pairs. SC1 was further subdivided into two
parts: SC1A allowed the use of all available data for model pre-
diction, while SC1B limited data use to just mutation and copy-
number variation (mimicking current clinical assay feasibility).

A total of 969 participants of diverse geography and expertize
registered for the Challenge (Supplementary Fig. 6a, b). One-
hundred sixty teams submitted across any portion of the
Challenge and 78 teams submitted for final assessment.
Specifically, SC1A received final submissions from 76 teams, 62
for SC1B and 39 for SC2.

As scoring metric we used the average weighted Pearson
correlation between the continuous endpoints of predicted and
known synergy values for SC1, and both the –log10(p) from a 3-
way analysis of variance (ANOVA) and balanced accuracy (BAC)
for SC2 where predictions were binary (Methods). Across all
teams, mean performance scores were r= 0.24 ± 0.01 and r=
0.23 ± 0.01 (weighted Pearson correlation ± standard error) for
SC1A and SC1B, respectively, and –log10(p)= 12.6 (3-way
ANOVA) for SC2. Despite omitting several input data types,
teams performed only slightly worse for SC1B, Δprimary metric
= 0.01 (t-test P= 0.90), compared to SC1A (Fig. 3a and
Supplementary Fig. 6c, d). While teams employed many different
methodological approaches to modeling drug synergy—including
regression, decision trees, random forests, Gaussian processes,
SVM, neural networks, text mining, mechanistic network-based,
and others (Supplementary Fig. 7a)—algorithm class showed little
relationship to performance (Supplementary Fig. 7b). The top
winning team in all three sub-challenge was Yuanfang Guan
(Y Guan) with primary metrics of 0.48, 0.45, and 74.89 in SC1A,
SC1B, and SC2, respectively. Based on the primary metric in SC2,
Y Guan performed considerably better (Methods; >5 Bayes
Factor, based on bootstrapped metrics’ comparisons) than other
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teams (Fig. 3b). All performance statistics and team rankings are
available at the Challenge website (synapse.org/DrugCombina-
tionChallenge[https://www.synapse.org/#!Synapse:syn4231880/
wiki/235649]).

To benchmark the performance of teams in the final rounds of
SC1A/B and SC2, we established lower and upper bounds of
performance. We defined the lower bound as the null model, i.e.,
random permutation of the synergy data across each cell line (see
‘Code availability’’ section). We would not expect algorithms to
predict better than the reproducibility observed between replicate
experiments. We therefore identified cases for which replicate
measurements (same drug/combination tested independently in
the same cell line) were available and assessed the primary metric
achieved when using one measure to predict the other. We
set this metric value as our upper-bound. We observed that
83%, 85%, and 94% of submitted models performed better
than random (Methods; 5% false discovery rate, FDR) for
SC1A, SC1B, and SC2, respectively. Team performances varied
widely, but remarkably the top 15 models (20%) submitted to
SC1A all reached a performance level comparable to experimental
replicates (primary metric= 0.43; Fig. 3a), as did the top 13
models (21%) in SC1B. Proportionally fewer teams performed at
the level of replicate experiments in SC2 based on the BAC, with
North Atlantic Dream (NAD) achieving the best performance
(BAC= 0.688; Fig. 3c).

Given the less robust performance of SC2, we assessed whether
an ensemble method—based on an aggregation of all submitted
models—could yield a better overall model, a phenomenon called
“wisdom of the crowd”9,14. By applying a Spectral Meta-Learner
(SML)15 as our ensembl approach, we achieved a modest
improvement in performance (BAC= 0.693) over the best
performing individual team (BAC= 0.688), as well as an
ensemble of randomly selected models (BAC= 0.63, (Fig. 3d).

Leveraging biological relationships improves predictions. A
common strategy among top-performing teams (DMIS, NAD,

and Y Guan) was to filter molecular features, leaving only those
related to known cancer drivers for subsequent modeling (Sup-
plementary Methods). These teams also consolidated pharma-
cological and/or functional pathway information associated with
the molecular drug target, enabling one drug’s model to learn
from data generated for another drug with the same target
(Y Guan16 and NAD16–18).

We took two approaches to analyze each feature type’s
importance, particularly whether incorporating molecular fea-
tures and chemical/biological knowledge can increase prediction
accuracy. In the first approach, we generated a baseline model
(following Team NAD’s method) utilizing only cell line and drug
labels as input features as per SC1B. We then assessed changes in
the primary metric after the substitution or addition of feature
types (Fig. 4a and Supplementary Methods). In the second
approach, we started with the DMIS model obtained from SC1B,
and then iteratively removed single feature types and pairs of
features to assess changes in prediction accuracy (Fig. 4b and
Supplementary Methods).

Surprisingly, high primary metrics were observed for the NAD
baseline model where the only input features were drug and cell
line label (Fig. 4a, 0.32). Drug target was the only feature to
improve performance of the NAD baseline model when swapped
with drug label (Fig. 4a, t-test P= 0.012). Furthermore, removing
both drug label and target resulted in the highest performance
drop for the DMIS model (Fig. 4b, −0.17). This result highlights
the importance of the global cell-line state in predicting drug
synergy, and how drug target information shared across drugs
can facilitate transfer learning across separate models. Mutational
and copy-number variation (CNV) data can similarly offer a
barcode of cell identity to encode cell line label. However,
where mutation data improved performance when replacing cell
line labels, replacement with CNV decreased performance
significantly (Fig. 4a, t-test P= 8.8e-6). Importantly, in all cases
additional feature data increased performance when added to the
NAD baseline model (Fig. 4a, t-test P= 0.009, 0.009, 0.002, 0.008,
0.021 adding drug target, KEGG pathway, Gene Ontology,
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signaling network, and mutation features, respectively). Ensemble
of different feature sets improved prediction most when
collectively increasing coverage of biological (pathway) complex-
ity (Fig. 4a, t-test P= 1.2e-6).

Inspecting consistently poorly predicted drug combinations.
While a global performance metric applied to all cell-lines and
drug combinations provides a broad assessment of model pre-
diction accuracy, we hypothesized that some models may be
optimized for certain subclasses of combinations and/or tumor
types. We assessed the Pearson correlation between predicted and
observed synergy scores for each combination in SC1A/B, and
clustered teams by correlation of performance across combina-
tions. Of the 118 combinations that had observed synergy scores
>20 in more than one cell line, we identified 22 combinations
predicted poorly by all participants (Fig. 5a, Methods), and over
50 combinations predicted well across all teams.

Combinations tested across a higher diversity of tumor types
tended to show lower overall performance (Supplementary
Fig. 8a; t-test P= 0.04), indicating that a pan-cancer prediction
presents a more difficult prediction task. Combinations tested
across more tumor types were also tested across greater numbers
of experiments (Supplementary Fig. 8b; Spearman= 0.56,

P= 2.3e–15), but no significant difference was observed between
performance and number of experiments within a cancer type
specific setting (Supplementary Fig. 8c, d). On average the quality
assessment scores were significantly better (t-test P= 0.018) for
the pharmacology experiments in the training set of well
predicted compared to poorly predicted combinations (Supple-
mentary Fig. 8e). Comparable trends were seen between the
quality of synergy and predictive performance in the training
and test sets (Supplementary Fig. 8f; r= 0.52 vs. 0.43). The
distribution of synergy scores were similar between poorly and
well predicted combinations (Supplementary Fig. 8g) as were
the proportion of synergistic cases (37% for poorly predicted vs.
39% for well predicted).

Well predicted cases were enriched for combinations inhibiting
both the PI3K/AKT and MAPK pathways (Fig. 5b, average
Pearson r= 0.37 vs. 0.25; t-test P= 0.008), or apoptosis pathway
combined with either metabolism, cell cycle, or receptor tyrosine
kinase pathways. The drugs targeting these pathways were
prevalent in our dataset, but these specific combinations of those
drugs were not (Supplementary Fig. 9a). Assessment of the
interactions between drug targets and neighboring proteins from
OmniPath, a comprehensive compendium of literature-based
pathway resources19, revealed no differences in the somatic
alteration frequency for targets or their first neighbors between
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the poorly and well predicted combinations (Supplementary
Fig. 9b, c). We did observe a significant enrichment of well
predicted combinations where both drugs’ respective targets were
downstream of a common neighboring protein (Fig. 5c, t-test
P= 0.01), and conversely, we observed an enrichment of poorly
predicted combinations where targets were both up-stream
(Fig. 5c, t-test P= 0.03). There was no significant difference
(Chi-sqr P= 0.44) in OmniPath protein network distance
between drug targets for well and poorly predicted combinations
(Fig. 5d), nor any correlation between either network distance
and average/median synergy scores (Fig. 5e) or the number of
cases with synergy >20. Combinations where targets were found
to not be connected in a protein network had significantly
lower average synergy (t-test P= 0.031) and lower max synergy
(t-test P= 0.0021).

Biomarkers of drug combination synergies. A limitation of
many machine learning algorithms is the lack of feature inter-
pretability and experimentally testable logic-based rules. We took
two approaches to identify biomarkers that may be predictive of
drug synergies: a direct survey of participants through which
predictive features were nominated for each drug pair (Supple-
mentary Data 2); and retrospective work focusing on results from
two of the best performing teams, NAD and DMIS, to decon-
volute features most impactful to model predictions (Supple-
mentary Fig. 10 and Supplementary Data 3).

The survey-submitted biomarker results varied in detail and
depth (Supplementary Data 2), but common genetic markers
were apparent across good predictions in SC1B, including EGFR,
ERBB2, PIK3CA, PTEN, TP53, or RB1. In the survey, synergy was
commonly assigned to drug pairs targeting directly down- or up-
stream of a mutated, amplified, overexpressed or deleted cancer
gene. We hypothesized that drug synergy may result when one
drug overcomes a resistance mechanism for the other. Focusing
on mutations in cancer genes (as defined by Iorio et al.12) we
identified all mutations associated with resistance to monother-
apy in our data (Supplementary Methods and Methods) selected
at increasingly stringent P-value (wilcoxon rank sum test)
thresholds (Supplementary Methods and Methods). For each
threshold, we then assessed the likelihood of synergy seen from
combinations paired to these monotherapies in the presence vs.
absence of the respective mutation. We observed an increase in
the proportion of synergistic drug combinations with each
increase in threshold stringency (Fig. 6a, Pearson r=−0.90, P
= 4.09e-38). We observed the same trend in patient-derived
xenograft (PDX) models (Fig. 6b, Pearson r=−0.95, P= 2.2e-
49). This observation supports the notion that drug sensitivity
may be restored with drug combinations targeting a resistance
driver.

We also explored models of best performing teams and their
chosen features, focusing on biomarker associations aligned to
combinations for which the respective team had achieved a robust
prediction accuracy (Pearson r > 0.5), with particular interest in
the genetic biomarkers revealed through SC1B. Multiple criteria
for quality, independence and reproducibility (Methods)4,8 were
applied yielding 13 feature-to-combination associations (Fig. 7a
and Supplementary Data 3), seven associated with synergy and
six with non-synergy. To assess whether these associations could
be independently validated as synergistic biomarkers, we explored
nine overlapping and 21 non-overlapping (independent) cell
lines in O’Neil et al.4 (Fig. 7b) that were treated with similar drug
combinations, i.e., same putative drug targets. Concordance of
association was observed in the nine overlapping cell lines (Fig. 7c;
six out of seven associations, ~86%) and in the 21 independent cell
lines (Fig. 7d; eight out of eleven associations, ~72%).

Among the prioritized feature-to-combination associations
were several genetic variants associated with synergistic responses
to the combination of receptor tyrosine kinase (RTK) inhibitors
with inhibitors of the downstream PI3K/AKT pathway. Ampli-
fications or activating mutations in EGFR or ERBB2 consistently
predicted synergy from inhibition of the RTK+ PI3K/AKT
pathways across multiple independent drugs and datasets
(Fig. 7a). Less direct relationships were also observed, including
combined AKT inhibition with either IGFR inhibition in the
ERBB2 mutant setting or FGFR inhibition in the EGFR mutant
setting (Supplementary Data 3). Despite kinase domain homology
it is unlikely these observations are explained by off-target effects
since EGFR, ERBB2, and FGFR mutations were only predictive of
respective monotherapy responses (Supplementary Fig. 11).
Combinations inhibiting multiple points within the PI3K/AKT
pathway also showed synergy in the presence of up-stream
activation from mutations in PIK3CA or deleterious events in
PTEN (Fig. 7a, e). Inhibition of the metalloproteinase ADAM17,
known to influence RTK activity20, also showed synergistic
responses in a common subset of cell lines when combined with
inhibitors of PIK3C-pan or AKT1/2 (Fig. 7a and Supplementary
Data 3), with a notable exception of PIK3CB/D selective
inhibitors, which show antagonism unique to PIK3CA mutant
cell lines (Fig. 7e, f). Amplification and activating mutations in
Androgen Receptor (AR) were also found to be associated with
antagonistic effects when targeting AKT in combination with
MAP2K or IGFR inhibitors (Fig. 7a).

Translatability of synergy and biomarker predictions. We
assessed the performance of top-performing AstraZeneca-
DREAM models on the independent screening datasets by O’Neil
et al.4 and ALMANAC13. Since no combination-cell experiments
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directly overlapped AZ-DREAM and O’Neil et al.4, we collapsed
drugs by shared targets to expand the overlap. We observed that
SC1A models from NAD and DMIS outperformed random
models (Fig. 8a, mean primary metric= 0.07, top 1% of random
models) for cell lines and drug target combinations non-
overlapping between O’Neill et al. and AZ-DREAM data (Sup-
plementary Data 1). Interestingly, no substantial performance
increase was observed when independent model predictions were

made for the ten cell lines in common between the two datasets,
nor the 30 combinations with similar chemical/target properties
(Supplementary Table 2 and Fig. 8b–d). As in the main Chal-
lenge, combining these two or more models in an ensemble led to
an improved prediction performance (Fig. 8a–d).

Considering the limited overlap and correlation of synergies
between AZ-DREAM and ALMANAC datasets, high perfor-
mance was not expected when predicting ALMANAC synergy
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scores with models trained on AZ-DREAM data points alone, as
was observed for the NAD model. We trained two NAD models
on 50% of the ALMANAC data: first a baseline model to show
maximum performance achievable when using only cell and
drug label features as input; and a second allowing use of the full
feature set as input. The full model consistently predicted
significantly better than baseline in the remaining 50% over ten
randomized iterations, giving confidence in the transferability of
the method designed for AZ-DREAM. Best performance was
observed for targeted combinations (r= 0.369 vs. 0.287 for full
NAD and baseline NAD model, ANOVA P= 1.322e-31 for
model type and P= 5.5e-05 for model type and targeted therapy
association, Fig. 8e).

Exploring AZ-DREAM biomarker associations prioritized as
described in earlier sections, we assessed statistical association
for drug combinations with consistent targets in the O’Neil et al.4

dataset. In the ten cell lines overlapping the AZ-DREAM and
O’Neil et al.4 datasets, seven of the prioritized biomarker-
drug combinations were present, of which six (86%) showed
reproducible directionality (FDR < 35%, Fig. 7c). In the 21 O’Neil
et al.4 cell lines not used within AZ-DREAM training, 11 of the
prioritized biomarker-drug combinations were present, of which
8 (72%) showed reproducible directionality (Fig. 7d).

Discussion
The objective of this AstraZeneca-DREAM Challenge was to
drive the development of innovative computational approaches
to predict novel drug combinations and to comprehensively

benchmark these approaches. To enable this we made one of the
largest in vitro drug combinatorial screens to date available to
the scientific community. We cover largely non-overlapping
experiments to existing datasets and, in particular, offer extensive
data for targeted therapies complimenting the non-targeted
chemotherapeutic agents covered in the NCI-ALMANAC.
Despite little overlap we demonstrated an encouraging reprodu-
cibility of data and predictions between screens, particularly
when considering the confounding differences in experimental
designs and assay formats21. Furthermore, we showed that some
trends represented in these data can be reproduced in vivo, and
that clinically efficacious combination pairs can be identified.
Our double-blinded benchmark of 78 methods provides an
unbiased comprehensive evaluation of the state-of-art of drug
synergy prediction. Collectively this Challenge manuscript equips
the scientific community with data and a methodological baseline
for algorithm development, alongside a suite of computational
methods to direct new experiments towards likely synergistic
drug combinations.

The results of the AstraZeneca-Sanger Drug Combination
Prediction DREAM Challenge have shed important light on the
best practices and limitations in predicting drug synergy. By
evaluating predictions from a large number of teams, we were
able to discern important strategies for predicting drug synergy
from molecular and chemical traits. As with most DREAM
Challenges, we observed that the machine learning method itself
has little impact on overall performance. Aggressive pre-filtering
that incorporates clean sparse network data to consider feature
relevance to drug targets and cancer was successfully used by top
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performers to limit model complexity and improve model gen-
eralizability. Despite the complexity of the problem, many teams
reached the upper-bound of performance levels based on varia-
bility in experimental replicates. This was further confirmed when
top-performing models were applied to an independent dataset,
demonstrating robustness to assay variability, and context
heterogeneity.

A comprehensive assessment of the predictive value of
monotherapy was not completed in the Challenge format, in part
due to initial miss-annotation of data. However, post-hoc ana-
lyses suggested it offered no significant improvement to well-
performing models (Supplementary Fig. 12). Despite minimal
predictivity from monotherapy itself as a feature, biomarkers
associated with monotherapy resistance were observed to have
predictive value for respective combinations. Looking forward,
additional attention is also required for the one-fifth of combi-
nations poorly predicted by all Challenge teams. The rationale
differentiating these combinations is non-obvious but our data
suggests, in part, some relationship to the complexity of network
connectivity between drug targets and proximal biomarkers
(Fig. 5c), perhaps a bias introduced by network-led dimension
reduction techniques employed by well-performing models.
Furthermore higher synergy scores were observed—in some
combinations—when both drugs target downstream of a com-
monly interacting protein22. Collectively, these observations
advocate for a more biologically rationalized approach to bio-
marker discovery, accounting for directionality and exclusivity
of signaling and functional relationships between biomarkers
and targets.

A notable absence from the Challenge was the use of mathe-
matical, reaction- or logic-based mechanistic pathway modeling
approaches23–27, likely due to the higher time and data input
needed for model creation. The dynamic nature of mechanistic
models may offer an advantage by enabling consideration of the
heterogeneity that exists across even apparently ‘clonal’’ cell line
populations28. The increasing availability of published pre-
derived mechanistic models for many cancer relevant pathways
may soon make such an approach more viable. Given the strong
benefit seen from inclusion of prior-knowledge, and as text-based
artificial intelligence technology matures, computational approa-
ches, such as natural language processing (NLP) to harness
knowledge from world literature may also become of significant
benefit. Alternatively, more generic signatures of dynamic (e.g.,
transcriptional) output may first be used to identify a mechanistic
rationale28–31 to which causative genetic or epigenetic events
can then be inferred and aligned as predictive features32,33. A
surprising result of our Challenge, however, suggested only
modest improvement to prediction from inclusion of all data in
SC1A compared to only genetics in SC1B.

To maximize potential for translation it is essential that
modeling approaches reveal testable biological insight, parti-
cularly considering that this and prior Challenges show no
predictive advantage to black box algorithms. As we discovered,
however, it can be difficult to incentivize knowledge retrieval
within a competition format that focuses on objective scoring of
performance. Despite these limitations, we were able to
extract important insights to biomarkers for certain drug
combinations. Given the dominance of RTK and PI3K/AKT
pathway targeting agents in the Challenge data, it was not
surprising that these revealed some of our strongest
combination-feature relationships. In multiple cases this
aligned to a two-hit hypothesis targeting the activating driver
with a downstream pathway component. These included
synergies between EGFR and AKT inhibitors in the presence
of activating EGFR mutations34, or AKT1/2 with pan-PI3K
inhibitors in the presence of pathway activating mutations

in PIK3CA or PTEN. In some cases the biomarker rationale
for AKT inhibitor synergy with RTK or MAPK inhibition was
less direct but indicative of crosstalk and feedback signaling
previously reported35. Interestingly antagonism was observed
in cell lines harboring activating mutations of AR36–39. Feed-
back signaling resulting from AKT inhibition has been seen
to drive AR activity, which in turn can lead to the activation
of the MAPK cascade39,40, attenuating respectively targeting
drug activity.

The synergy observed between ADAM17 and PI3K/AKT
pathway inhibitors may work through independent inhibition of
multiple cancer hallmarks, or via a more direct mechanism
whereby inhibition of ADAM17 driven proteolysis and shedding
of RTKs20 stabilizes and increases signaling through PI3K/
AKT41,42. Notably ADAM17 predominantly influences RTK’s
other than EGFR/ERBB220, and no benefit is seen in cells with
mutations in these genes. ADAM17 inhibition, however, showed
antagonism unique to combined PIK3CB/D selective inhibitors
within the PIK3CA mutant setting. Reduced synergy may result
from a lessened dependency on PI3K paralogues in the presence
of constitutively activated PIK3CA, or reduced benefit from
ADAM17 loss in the extreme luminal/epithelial physiology of
PIK3CA mutants. The apparent antagonism, however, suggests
feedback following PIK3CB/D inhibition enhances mutant
PIK3CA expression/activity. Indeed PIK3CB inhibition has been
shown to result in elevated expression and activity of PIK3CA43,
and may also relieve the inhibitory effects of substrate competi-
tion or dimerization between PIK3CA and PIK3CB/D.

Many drug combinations effective in the clinic to date involve
mechanistically distinct agents, often chemotherapies combined
with an additional targeted therapy, for which benefit may arise
from the independent effects of the drugs on different sub-
populations44 rather than synergy. More recently, an increasing
number of combinations include multiple targeted therapies5.
Hence, identifying both molecularly synergistic and com-
plementary drugs, and how these affect inter- and intra-patient
heterogeneity remains an essential area of future research. Future
Challenges should further address the question of how to opti-
mize translation of preclinical results into the clinic45. Where this
Challenge addressed prediction of synergy for combinations of
known drugs, an ability to predict truly novel beneficial target
combinations should also be explored. Furthermore, the space of
therapeutic combinations should be extended to include >2 drugs,
and covering targets in independent cell types, such as subclonal
tumor cell populations or cells of the tumor microenvironment
and immune system3. These approaches can be complemented
by adaptive and sequential strategies reactive to monitoring of
the patient tumor and physiology. Success in these areas will
be dependent on the availability and access to large-scale data
needed for model development and validation. Public-private
partnerships—as exemplified by this Challenge and AstraZeneca’s
generous sharing of data with the research community—will be
critical to future efforts.

Methods
Drug combination screening. All cell lines were authenticated at AstraZeneca cell
banking using DNA fingerprinting short-tandem repeat assays and each bank is
confirmed to be free from mycoplasma. Cells ordered from the global cell bank are
cultured for up to 20 passages. Cell suspensions are counted using a haemocyt-
ometer and cells are re-suspended in full growth medium containing Pen/Strep to
a final density for different cell line densities and for different seeding densities into
384-well cell culture plate. A volume of cells as determined by cell count and
dependent on cell type was added to each well of a Greiner 384-well plate using
a Multidrop Combi liquid handler and then incubated at 37 °C and 5% CO2

overnight in a rotating incubator. After seeding, plates were shaken to distribute
the cells more evenly at the bottom of the wells and left to stand on the bench for
1 h to allow even settling of cells.
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Drug combinations were screened with four combinations per 384-well plate in
a 6-by-6 range of concentration format. The first row and first column in the 6-by-
6 matrix are monotherapies of each drug in the combination, while the top left
corner is the untreated control. Drug combinations therefore were tested in a 5-by-
5 layout with comprehensively rescreening the monotherapy and control for each
experiment to minimize batch effects. Drug concentrations ran from the highest
dose to the lowest dose. All plates were dosed with drugs solubilized in DMSO
or PBS, or DMSO alone to provide comparable treatment and max control wells.
After 5 days of incubation 5 µl of 2 µM Sytox Green working solution was added
to each well of the 384-well plates (0.133 µM final concentration) and the plates
incubated for 1 h at room temperature. After incubation plates were read by the
Acumen laser scanner to detect the number of Sytox Green stained cells. The total
fluorescent intensity across the well was then read and the number of dead cells
calculated by dividing this total fluorescence by the fluorescence of a single cell. The
plates were re-read on the Acumen to give a total cell count. A live cell count was
then determined by subtracting the dead cell count from the total cell count.

Quantifying combination synergy and antagonism. Synergy and antagonism
were quantified in an automated way using freely available Combenefit software
(v1.31)11. The approach implemented in Combenefit is based on quantifying
synergy distribution by comparing a drugs combination experimental dose-
response surface to a modeled reference based on individual drugs dose-response
curves. Briefly, for each 6-by-6 matrix, monotherapy dose-responses were extracted
and modeled as a sigmoidal curve via the Hill equation46. A reference dose-
response surface is then generated by Combenefit based on the Loewe model of
additive combinations and the single drug dose-response curves. The experimental
combination dose–response surface is then compared by the software to the model-
generated one, resulting in a synergy distribution in concentration space. This
synergy distribution is finally further summarized by integrating the synergy
distribution in logarithmic concentration space. The procedure resulted in a single
score (the result of this integration) for each combination.

In vivo response class definitions. Response data for 62 treatments across ~1000
PDX models were derived from Gao et al.8 Putative drug targets from the AZ-
DREAM and Gao et al.4,8 dataset were utilized to identify overlap. As synergy
scores were not available for the Gao et al.4,8 dataset, ‘Best Response’’ (complete
response-CR, partial response-PR, stable disease-SD, progressive disease-PD) for
each combination-PDX pair were extracted and compared with monotherapy ‘Best
Response’’ of each drug in the combination on the same PDX model. This was
represented numerically where CR= 4, PR= 3, SD= 2, and PD= 1. Synergy was
assigned to a change of +2 or more, and Antagonism to a change of −2 or less. A
change of +1, 0, or −1 was assigned Additive, considering an element of experi-
mental variability. Cases where best response has been observed as a range over
time (PR→→PD), the earliest response was considered as we hypothesize this to
reflect in vitro response in a more realistic sense for comparison.

The percent tumor volume change class definitions are as following:

1. Synergistic efficacy: Combination treatment leads to better tumor regression
than either monotherapy.

2. Synergistic non-efficacy: Combination response is better than either
monotherapy but does not result in tumor regression.

3. Additivity: Combination response same as the better of either monotherapy
responses.

4. Non-synergistic efficacy: Combination response weaker than the better of the
monotherapy responses but results in tumor regression.

5. Antagonism: Combination response weaker than both monotherapies.

In vitro response class definitions. Response scores defined by the Loewe synergy
model were considered in ordered to define in vitro response classes. Synergism
was defined as Loewe scores ≥20, Antagonism ≤−20, and rest are classed as
Additive.

Molecular characterization. The 85 cell lines were molecularly characterized,
including:

1. Mutations from whole exome sequencing with Illumina HiSeq 2000 Agilent
SureSelect (EGAS00001000978)

2. Copy-number variants from Affymetrix SNP6.0 microarrays
(EGAS00001000978)

3. Gene expression from Affymetrix Human Genome U219 array plates (E-
MTAB-3610)

4. DNA methylation from Infinium HumanMethylation450 v1.2 BeadChip
(GSE68379)

Mutations were called with CAVEMAN [https://github.com/cancerit/
CaVEMan/]47 and PINDEL [http://gmt.genome.wustl.edu/packages/pindel/]48 as
reported in ref. 12. Variants were provided without further filtering, including
putative passenger mutations, germline variants, and potential cell line artefacts,
which are in total 75,281 mutations in 85 cell lines.

Copy-number variants (CNVs) are called with the PICNIC [http://www.sanger.
ac.uk/resources/software/picnic/]49 algorithm using the human genome build 38
as the reference. CNVs might be wild type, deletion, or amplification of certain
segments in a chromosome. One or multiple genes can fall within such segments.
We reported copy number for the major and minor allele on gene and
segment level.

Gene expression was processed as described in ref. 12, including Robust Multi-
array Average (RMA) normalization with the R-package ‘affy’’50. Gene expression
for 83 cell lines across 17,419 genes (HGNC labels) was reported; no expression
was available for MDA-MB-175-VII and NCI-H1437.

DNA methylation was reported for 82 cell lines the beta and M values51 for
287,450 probes; no methylation was available for the cell lines SW620, KMS-11,
and MDA-MB-175-VII. In an additional processing step, CpG sites were
compressed to CpG island with the definition from UCSC genome browser52,
resulting in a total of 26,313 CpG island based on either M or beta values.

Drug properties. The identity of all drugs was anonymized, but for all agents the
putative targets are revealed. The gene names of the protein targets are listed with
‘*’’ denoting any character if the target is a protein family. Furthermore, for 58
drugs the Molecular weight, H-bond acceptors, H-bond donors, calculated octanol-
water partition coefficient, Lipinski’s rule of 5, and their SMILES (Simplified
Molecular Input Line Entry Specification) are provided. Drugs were grouped into
pathways and biological processes manually according to their protein targets
(Supplementary Data 1).

Challenge organization. The Challenge consisted of two sub-challenges, each with
multiple rounds: a leaderboard, validation, bonus, and collaborative round. SC1
had four leaderboard rounds that lasted 8, 6, 5, and 5 weeks, while SC2 had three
leaderboard rounds that lasted 12, 7, and 5 weeks. Participants were given a lea-
derboard dataset to build a model and generate three prediction files per leader-
board round. Scores were returned to participants so that they can improve their
model throughout these rounds for their one submission to the final round, which
was scored against a held-out dataset. The final round lasted for 2 weeks, which was
then followed by a 9 week bonus round and 10 week collaborative round.

Challenge pharmacology data splits. In SC1, participants were asked to
predict drug synergy of 167 combinations in the panel of 85 cell lines. The synergy
data of each drug combination was partitioned into three sets: a training dataset
(3/6–50%), a leaderboard set (1/6–16.7%), and validation set (2/6–33%) of treated
cell lines. SC2 leveraged data for remaining 740 drug combinations not overlapping
with those used in SC1, although data for some of the same drugs (in combination
with different drugs), homologous drugs (i.e., same target, but different chemical
structure), and cell lines were included. A leaderboard set (370 combinations) and a
final validation set (370 combinations) were randomly split, which are mutually
exclusive from each other, as well as from SC1.

Primary scoring metric of Sub-Challenge 1. With synergy scores roughly nor-
mally distributed and and outliers truncated to −100 and 100 (Supplementary
Fig. 2), Pearson’s correlation was employed as the base measure of prediction
accuracy within each drug combination. The primary metric was then the average
weighted Pearson correlation (ρw) of the predicted vs. observed synergy scores
across each individual drug combination, i. The weight for a given drug combi-
nation i was

ffiffiffiffiffiffiffiffiffiffiffiffi

ni � 1
p

where ni is the number of cell lines treated with the drug
combination. This resulted in the following primary metric for SC1A&B,

ρw ¼
PN

i¼1
ffiffiffiffiffiffiffiffiffiffiffiffi

ni � 1
p

ρi
PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi

ni � 1
p ; ð1Þ

where N`= 167 were the tested drug combinations.

Tie-breaking scoring metric of Sub-Challenge 1. The tie-breaking metric was
identical to the primary metric Eq. 1 except that it was applied to the subset of
drug combinations that have at least one cell line with synergy score Sci � 20in the
held-out test set (Sci= synergy score at cell line c and drug combination i). Neither
the subset of drug combinations nor its size (N= 118) was revealed to participants
prior to final evaluation.

Primary scoring metric of Sub-Challenge 2. The primary metric was a sequential
three-way ANOVA, which tested the separation of held-out synergy scores by
predicted synergy (=1) and predicted non-synergy (=0). In the sequential three-
way ANOVA (type 1), we controlled for systematic drug and cell line effects, and
evaluated variance explained by a given team’s synergy predictions. We define
the primary metric as

SA ¼ �sgn ´ log10ðpÞ; ð2Þ
where sgn is the sign of the effect size (positive or negative separation by

prediction), and p is the P-value (F-statistic) computed from the ANOVA
distinguishing predicted synergy (=1) from predicted non-synergy (=0) across all
experimentally measured synergy scores.
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This three-way ANOVA score can be interpreted via linear regression where
the intercept is set to 0.

y � β1 � dcþ β2 � clþ β3 � x ð3Þ
Here, the response variable y is the observed synergy, which is normally

distributed, and there are three predictive features: dc= drug combination, cl= cell
line and a teams binary synergy predictions x. Then the primary metric,
SA ¼ �log10ðp:value½β3�Þxsignðβ3Þ, measures the significance of a team’s
predictions after controlling for variance associated with cell line and and drug
combinations.

Tie-breaking scoring metric of Sub-Challenge 2. As the tie-breaking metric, we
used balanced accuracy (BAC) using discretized synergy scores Sci � 20to evaluate
the binary classifiers submitted in this sub-challenge. This metric evaluates both the
sensitivity and specificity of the classifiers while taking into account the low pro-
portion of synergistic cases to un-synergistic.

Application of the Tie-Breaking Metric. In each sub-challenge, we estimated a
Bayes Factor (BF) using a paired bootstrapped approach to determine whether
a team’s score was statistically indistinguishable from another. In the event that a
team’s scores were determined to be statistically equivalent, we then applied the tie-
breaking metric. To estimate the BF, we sample with replacement from the M
observations of the given sub-challenge and computing the primary metric (pm)
for each team 1000 times. For a given team, T, KT was computed by

KT ¼
P1000

i¼1 pmT;i<pmbest;i
P1000

i¼1 pmT;i � pmbest;i

ð4Þ

Where pmbest;iis the bootstrapped primary metric at iteration i for the team with
the highest primary metric (non-bootstrapped).

Assessing performance of individual combinations. Combinations defined as
poorly predicted had an average predicted vs. observed Pearson correlation across
teams in the range seen with a random predictor (SC1 Primary metric=−0.25 and
0.25). In contrast, well predicted combinations had an average Pearson correlation
across teams of above 0.5.

Independent validation on O’Neil et al. Merck screen. In order to assess the
utility of features and the predictability of the learning algorithms in new contexts,
we provided the participants an independent large-scale oncology combination
screen published recently4. The O'Neil et al.4 dataset consists of 22,737 experi-
mental endpoints covering 583 doublet combinations across 39 diverse cancer cell
lines. Thirty-eight experimental drugs and approved drugs were included in this
combination screen using a 4-by-4 dosing regimen. Raw cell viability measures for
each combination experiment were processed through Combenefit11 to generate
synergy scores as per the Challenge dataset. While there are 6 approved drugs,
49 targets, and 10 cell lines in common between the Challenge and O'Neil et al.4

datasets, the total number of exact experiments (Drug A–Drug B–Cell line)
overlapping is below 100, giving the participants a highly independent validation
set for their prediction algorithms. This information was provided to best per-
forming teams in the Challenge, along with a dictionary of curated chemical
structures and putative targets for each. Prediction models were trained on the
released Challenge dataset and made synergy score predictions on the O'Neil et al.
dataset. Metrics for SC1 and SC2 were used to assess prediction performance.

Individual prediction models. Full description and implementation of models
used by teams in the final submission to DREAM can be downloaded from:

Synapse.org/
AstraZeneca_Sanger_Drug_Combination_Challenge_Leaderboards [http://www.
synapse.org/AstraZeneca_Sanger_Drug_Combination_Challenge_Leaderboards].
Top-performing prediction models in SC1 and SC2 made use of genetic features
relating to the gene targets of the drugs. Feature selection from the models enabled
nomination of putative biomarkers for drug combination synergy (Supplementary
Methods).

Ensemble models. SC2 participant models were aggregated using two types of
ensemble models Spectral Meta-Learner (SML) and Random Aggregation. SML
choses predictions from n methods to aggregate based on an estimation of BAC for
each method without using actual labels15,53. Random Aggregation is the tradi-
tional way that people aggregate models by giving equal weight to each method.
We randomly pick n methods (do this ten times) and for n methods we compute
the average BAC and the error.

Monotherapy biomarkers and synergy enrichment. Monotherapy markers
are the mutational status of genes, either mutated or copy number altered, from
the pan-cancer binary event matrix (BEM)12, which separate the monotherapy
response into sensitive vs. non-response. The likelihood of separation was
estimated with a Wilcoxon Rank Sum test (Supplementary Methods). From most

significant monotherapy marker to lowest in 0.1 steps of –log10(P-value), we
accumulative evaluated the percentage of synergistic combinations (synergy score
≥20) with at least one monotherapy marker. This analysis was bootstrapped five
times with 80% of the pharmacology data (Supplementary Methods).

Synergy biomarkers. A short list of putative synergy biomarkers were derived
from the five highest ranked features of well predicted drug combinations (Pearson
r > 0.5) from the two best performers NAD and DMIS. Features were ranked based
on their feature weight or importance for given well predicting model. This gene-
to-combination short list, was filtered for associations predicted by both teams, or
genes biological related to the drug target defined as either the gene being the target
itself, a short distance to it in OmniPath signaling network (two molecules up- or
downstream) or GO term similarity54 larger than 0.7. This resulted in a list of 47
gene-to-combination associations that we further studied. A gene within this list is
considered mutant if it was deleted, amplified (>7 copies) or mutated in any sense,
resulting in an extended BEM12. We calculated the P-value for each suggested
association with an ANOVA correcting for tissue of origin and multiple hypothesis
testing via Benjamini Hochberg. The effect sizes is the mean difference in synergy
score between mutant and wild-type cell lines.

For external validation of those putative biomarkers of synergy, we focused on
drug combinations in O’Neil et al.4, ALMANAC13, and additional experimental
data from AstraZeneca (Supplementary Data 3). We validated biomarkers in two
different contexts, (i) for cell lines overlapping with AZ-DREAM, considered as
biological replicates, and (ii) cells non-overlapping for predictions on independent
cell lines.

Literature evidence for the shortlisted combination-biomarker associations
was identified through PubMed search. The aim was to identify published evidence
of (i) the combination-biomarker association, (ii) the combination but not the
specific biomarker, and (iii) either one of the targets and the biomarker association.
The publications were further categorized into in vitro, in vivo, and preclinical
studies. Publications that discuss the specific combination-biomarker association
have been highlighted in red (Supplementary Data 3). In summary, synergy
biomarker were derived from best performer models, and highlighted based
external validation, as well as literature support.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data used for this study are available from the Genomics of Drug Sensitivity in
Cancer (GDSC [http://www.cancerrxgene.org/downloads/]) repository12, the Catalog of
Somatic Mutations in Cancer (COSMIC[http://cancer.sanger.ac.uk/cell_lines])
database55, the European Genome-phenome Archive (EGA) EGAS00001000978, Gene
Expression Omnibus (GEO) GSE68379, ArrayExpress E-MTAB-3610, Synapse database
synapse.org/DrugCombinationChallenge[https://www.synapse.org/
DrugCombinationChallenge] and the AstraZeneca Open Innovation Portal
openinnovation.astrazeneca.com/data-library.html[https://openinnovation.astrazeneca.
com/data-library.html].

Code availability
Full description and source code of all participants in this Challenge can be downloaded
from synapse.org/DrugCombinationChallenge[https://www.synapse.org/
DrugCombinationChallenge].
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