147 research outputs found

    Charm System Tests of CPT and Lorentz Invariance with FOCUS

    Get PDF
    We have performed a search for CPT violation in neutral charm meson oscillations. While flavor mixing in the charm sector is predicted to be small by the Standard Model, it is still possible to investigate CPT violation through a study of the proper time dependence of a CPT asymmetry in right-sign decay rates for D0Kπ+D^0\to K^-\pi^+ and \d0b\to K^+\pi^-. This asymmetry is related to the CPT violating complex parameter ξ\xi and the mixing parameters xx and yy: ACPTReξyImξxA_{CPT}\propto{\rm Re} \xi y-{\rm Im} \xi x . Our 95% confidence level limit is 0.0068<ReξyImξx<0.0234-0.0068<{\rm Re} \xi y-{\rm Im} \xi x<0.0234. Within the framework of the Standard Model Extension incorporating general CPT violation, we also find 95% confidence level limits for the expressions involving coefficients of Lorentz violation of (2.8<N(x,y,δ)(Δa0+0.6ΔaZ)<4.8)×1016(-2.8<N(x,y,\delta)(\Delta a_0 + 0.6 \Delta a_Z)<4.8)\times 10^{-16} GeV, (7.0<N(x,y,δ)ΔaX<3.8)×1016(-7.0<N(x,y,\delta)\Delta a_X<3.8)\times 10^{-16} GeV, and (7.0<N(x,y,δ)ΔaY<3.8)×1016(-7.0<N(x,y,\delta)\Delta a_Y<3.8)\times 10^{-16} GeV, where N(x,y,δ)N(x,y,\delta) is the factor which incorporates mixing parameters xx, yy and the doubly Cabibbo suppressed to Cabibbo favored relative strong phase δ\delta.Comment: 12 pages 5 figure

    K0-Sigma+ Photoproduction with SAPHIR

    Full text link
    Preliminary results of the analysis of the reaction p(gamma,K0)Sigma+ are presented. We show the first measurement of the differential cross section and much improved data for the total cross section than previous data. The data are compared with model predictions from different isobar and quark models that give a good description of p(gamma,K+)Lambda and p(gamma,K+)Sigma0 data in the same energy range. Results of ChPT describe the data adequately at threshold while isobar models that include hadronic form factors reproduce the data at intermediate energies.Comment: 4 pages, Latex2e, 4 postscript figures. Talk given at the International Conference on Hypernuclear and Strange Particle Physics (HYP97), Brookhaven National Laboratory, USA, October 13-18, 1997. To be published in Nucl. Phys. A. Revised version due to changes in experimental dat

    New Measurements of the D+ to K* mu nu Form Factor Ratios

    Get PDF
    Using a large sample of D+ to K- pi+ mu+ nu decays collected by the FOCUS photoproduction experiment at Fermilab, we present new measurements of two semileptonic form factor ratios: rv and r2. We find rv = 1.504 \pm 0.057 \pm 0.039 and r2 = 0.875 \pm 0.049 \pm 0.064. Our form factor results include the effects of the s-wave interference discussed in a previous paper.Comment: 12 pages, 5 figure

    Measurement of the D+ and Ds+ decays into K+K-K+

    Full text link
    We present the first clear observation of the doubly Cabibbo suppressed decay D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay Ds+ --> K-K+K+. These signals have been obtained by analyzing the high statistics sample of photoproduced charm particles of the FOCUS(E831) experiment at Fermilab. We measure the following relative branching ratios: Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/- 0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) = (8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3.Comment: 10 pages, 8 figure

    Geniculo-Cortical Projection Diversity Revealed within the Mouse Visual Thalamus

    Get PDF
    This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.pone.0144846All dLGN cell co-ordinates, V1 injection sites, dLGN boundary coordinates, experimental protocols and analysis scripts are available for download from figshare at https://figshare.com/s/36c6d937b1844eec80a1.The mouse dorsal lateral geniculate nucleus (dLGN) is an intermediary between retina and primary visual cortex (V1). Recent investigations are beginning to reveal regional complexity in mouse dLGN. Using local injections of retrograde tracers into V1 of adult and neonatal mice, we examined the developing organisation of geniculate projection columns: the population of dLGN-V1 projection neurons that converge in cortex. Serial sectioning of the dLGN enabled the distribution of labelled projection neurons to be reconstructed and collated within a common standardised space. This enabled us to determine: the organisation of cells within the dLGN-V1 projection columns; their internal organisation (topology); and their order relative to V1 (topography). Here, we report parameters of projection columns that are highly variable in young animals and refined in the adult, exhibiting profiles consistent with shell and core zones of the dLGN. Additionally, such profiles are disrupted in adult animals with reduced correlated spontaneous activity during development. Assessing the variability between groups with partial least squares regression suggests that 4?6 cryptic lamina may exist along the length of the projection column. Our findings further spotlight the diversity of the mouse dLGN?an increasingly important model system for understanding the pre-cortical organisation and processing of visual information. Furthermore, our approach of using standardised spaces and pooling information across many animals will enhance future functional studies of the dLGN.Funding was provided by a Wellcome Trust grant jointly awarded to IDT and SJE (083205, www.wellcome.ac.uk), and by MRC PhD Studentships awarded to MNL and ACH (http://www.mrc.ac.uk/)

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    Measurements of Relative Branching Ratios of Λc+\Lambda_{c}^{+} Decays into States Containing Σ\Sigma

    Full text link
    We have studied the Cabibbo suppressed decay (\Lambda_{c}^{+}\to \Sigma ^{+}K^{*0}(892)) and the Cabibbo favored decays (\Lambda_{c}^{+}\to \Sigma ^{+}K^{+}K^{-}), (\Lambda_{c}^{+}\to \Sigma ^{+}\phi) and (\Lambda_{c}^{+}\to \Xi ^{*0}(\Sigma^{+}K^{-})K^{+}) and measured their branching ratios relative to (\Lambda_{c}^{+}\to \Sigma ^{+}\pi ^{+}\pi ^{-}) to be ((7.8\pm 1.8\pm 1.3)%), ((7.1\pm 1.1\pm 1.1)%), ((8.7\pm 1.6\pm 0.6)%) and ((2.2\pm 0.6\pm 0.6)%), respectively. The first error is statistical and the second is systematic. We also report two 90% confidence level limits (\Gamma (\Lambda_{c}^{+}\to \Sigma ^{-}K^{+}\pi ^{+})/\Gamma (\Lambda_{c}^{+}\to \Sigma^{+}K^{*0}(892))<35%) and (\Gamma (\Lambda_{c}^{+}\to \Sigma ^{+}K^{+}K^{-})_{NR}/\Gamma(\Lambda_{c}^{+}\to \Sigma ^{+}\pi ^{+}\pi ^{-})<2.8%).Comment: 12 page

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe
    corecore