285 research outputs found

    An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker

    Get PDF
    We present an estimate of net CO2 exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO2 mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO2 called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO2 in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed –0.65 PgC/yr (1 petagram = 10^15 g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of –0.4 to –1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to –0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov

    The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    Get PDF
    Model experiment description paperProjections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017-2018 time frame, and output from the climate model projections made available and analyses performed over the 2018-2020 period.CRESCENDO project members (V. Eyring, P. Friedlingstein, E. Kriegler, R. Knutti, J. Lowe, K. Riahi, D. van Vuuren) acknowledge funding received from the Horizon 2020 European Union’s Framework Programme for Research and Innovation under grant agreement no. 641816. C. Tebaldi, G. A. Meehl and B. M. Sanderson acknowledge the support of the Regional and Global Climate Modeling Program (RGCM) of the U.S. Department of Energy’s, Office of Science (BER), Cooperative Agreement DE-FC02-97ER6240

    Land-Use Change and Earth System Dynamics: Advancing the Science

    Get PDF
    Quantifying the effects of land-use changes on Earth system dynamics requires adequate information on both past and future land-use activities in a format appropriate for models capable of tracking relevant impacts. This presentation will review past approaches to understanding the role of land-use change on the Earth system dynamics, and summarize new work involving ‘land-use harmonization’ (Hurtt et al. 2009) to advance the understanding for IPCC-AR5 and beyond. Emphasis will be placed on the importance and accuracy of historical maps, uncertainties in future projections, and key challenges for the future

    Past and future carbon fluxes from land use change, shifting cultivation and wood harvest

    Get PDF
    Carbon emissions from anthropogenic land use (LU) and land use change (LUC) are quantified with a Dynamic Global Vegetation Model for the past and the 21st century following Representative Concentration Pathways (RCPs). Wood harvesting and parallel abandonment and expansion of agricultural land in areas of shifting cultivation are explicitly simulated (gross LUC) based on the Land Use Harmonization (LUH) dataset and a proposed alternative method that relies on minimum input data and generically accounts for gross LUC. Cumulative global LUC emissions are 72 GtC by 1850 and 243 GtC by 2004 and 27–151 GtC for the next 95 yr following the different RCP scenarios. The alternative method reproduces results based on LUH data with full transition information within <0.1 GtC/yr over the last decades and bears potential for applications in combination with other LU scenarios. In the last decade, shifting cultivation and wood harvest within remaining forests including slash each contributed 19% to the mean annual emissions of 1.2 GtC/yr. These factors, in combination with amplification effects under elevated CO2, contribute substantially to future emissions from LUC in all RCPs

    Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordData availability: The data that support the findings of this study are available from the corresponding author upon request.Achieving the long-term temperature goal of the Paris Agreement requires forest-based mitigation. Collective progress towards this goal will be assessed by the Paris Agreement’s Global stocktake. At present, there is a discrepancy of about 4 GtCO2yr−1in global anthropogenic net land-use emissions between global models (reflected in IPCC assessment reports) and aggregated national GHG inventories (under the UNFCCC). We show that a substantial part of this discrepancy (about 3.2 GtCO2yr−1) can be explained by conceptual differences in anthropogenic forest sink estimation, related to the representation of environmental change impacts and the areas considered as managed. For a more credible tracking of collective progress under the Global stocktake, these conceptual differences between models and inventories need to be reconciled. We implement a new method of disaggregation of global land model results that allows greater comparability with GHG inventories. This provides a deeper understanding of model–inventory differences, allowing more transparent analysis of forest-based mitigation and facilitating a more accurate Global stocktake.J.H. was supported by EU FP7 through project LUC4C (GA603542) and the UK NERC project GGRiLS-GAP. G.G. was supported by Administrative Arrangement Number 340203/2016/742550/SER/CLIMA.A3. A.K.J. was supported by the NSF (AGS 12-43071) and DOE (DE-SC0016323). J.E.M.S.N. was supported by the German Research Foundation’s Emmy Noether Programme (grant number PO1751/1-1). G.G., J.H., G.P.P. and L.P. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 776810 (VERIFY). C.D.K. was supported by the US DOE under Contract DE-AC02-05CH11231 as part of their RGMA (BGC-Feedbacks SFA) and TES Programs (NGEE-Tropics). A.K.J. was supported under the US NSF (NSF-AGS-12-43071)

    Carbon sequestration via wood burial

    Get PDF
    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink

    Toward Integrated Seasonal Predictions of Land and Ocean Carbon Flux: Lessons from the 2015-16 El Nino

    Get PDF
    Seasonal forecasts made by coupled atmosphere-ocean general circulation models (GCMs) are increasingly able to provide skillful forecasts of climate anomalies. At some centers, the capabilities of these models are being expanded to represent carbon-climate feedbacks including ocean biogeochemistry (OB), terrestrial biosphere (TB) interactions, and fires. These advances raise the question of whether such models can support skillful forecasts of carbon fluxes.Here, we examine whether land and ocean carbon flux anomalies associated with the 2015-16 El Nino could have been predicted months in advance. This El Nino was noteworthy for the magnitude of the ocean temperature perturbation, the skill with which this perturbation was predicted, and the extensive satellite observations that can be used to track its impact. We explore this topic using NASA's Goddard Earth Observing System (GEOS) model, which routinely produces an ensemble of seasonal climate forecasts, and a suite of offline dynamical and statistical models that estimate carbon flux processes. Using GEOS forecast fields from 2015-16 to force flux model hindcasts shows that these models are able to reproduce significant features observed by satellites. Specifically, OB hindcasts are able to predict anomalies in chlorophyll distributions with lead times of 3-4 months. The ability of TB hindcasts to reproduce NDVI anomalies is driven by the skill of the climate forecast, which is greatest at short lead times over tropical landmasses. Statistical fire forecasts driven by ocean climate indices are able to predict burned area in the tropics with lead times of 3-12 months. We also integrate the ocean and land hindcast fluxes into the GEOS GCM to examine the magnitude of the atmospheric carbon dioxide anomaly and compare with satellite and ground-based observations.While seasonal forecasting remains an active area of research, these results demonstrate that forecasts of carbon flux processes can support a variety of applications, potentially allowing scientists to understand carbon-climate feedbacks as they happen and to capitalize on more flexible satellite technologies that allow areas of interest to be targeted with lead times of weeks to months. We also provide a first glimpse at the spring 2019 carbon forecast using the GEOS-based forecasting system

    Effects of climate and land-use changes on fish catches across lakes at a global scale

    Get PDF
    Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security
    • …
    corecore