530 research outputs found

    Bistability and regular spatial patterns in arid ecosystems.

    Get PDF
    A variety of patterns observed in ecosystems can be explained by resource–concentration mechanisms. A resource–concentration mechanism occurs when organisms increase the lateral flow of a resource toward them, leading to a local concentration of this resource and to its depletion from areas farther away. In resource–concentration systems, it has been proposed that certain spatial patterns could indicate proximity to discontinuous transitions where an ecosystem abruptly shifts from one stable state to another. Here, we test this hypothesis using a model of vegetation dynamics in arid ecosystems. In this model, a resource– concentration mechanism drives a positive feedback between vegetation and soil water availability. We derived the conditions leading to bistability and pattern formation. Our analysis revealed that bistability and regular pattern formation are linked in our model. This means that, when regular vegetation patterns occur, they indicate that the system is along a discontinuous transition to desertification. Yet, in real systems, only observing regular vegetation patterns without identifying the pattern-driving mechanism might not be enough to conclude that an ecosystem is along a discontinuous transition because similar patterns can emerge from different ecological mechanisms

    Robust scaling in ecosystems and the meltdown of patch size distributions before extinction

    Full text link
    Ecology Letters (2011) 14: 29–35Robust critical systems are characterized by power laws which occur over a broad range of conditions. Their robust behaviour has been explained by local interactions. While such systems could be widespread in nature, their properties are not well understood. Here, we study three robust critical ecosystem models and a null model that lacks spatial interactions. In all these models, individuals aggregate in patches whose size distributions follow power laws which melt down under increasing external stress. We propose that this power-law decay associated with the connectivity of the system can be used to evaluate the level of stress exerted on the ecosystem. We identify several indicators along the transition to extinction. These indicators give us a relative measure of the distance to extinction, and have therefore potential application to conservation biology, especially for ecosystems with self-organization and critical transitions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79378/1/j.1461-0248.2010.01553.x.pd

    Ecosystem thresholds, tipping points, and critical transitions

    Get PDF
    An organized session at the American Geophysical Union Fall Meeting in New Orleans, Louisiana, USA, December 201

    Tipping elements of the Indian monsoon : Prediction of onset and withdrawal

    Get PDF
    Funded by LINC project. Grant Number: 289447 EC's Marie Curie ITN program. Grant Number: FP7-PEOPLE-2011-ITN RFBR. Grant Number: 16-07-01186 Government of Russian Federation. Grant Number: 14.Z50.31.0033Peer reviewedPublisher PD

    Jellyfish Stings Trigger Gill Disorders and Increased Mortality in Farmed Sparus aurata (Linnaeus, 1758) in the Mediterranean Sea

    Get PDF
    none8siJellyfish are of particular concern for marine finfish aquaculture. In recent years repeated mass mortality episodes of farmed fish were caused by blooms of gelatinous cnidarian stingers, as a consequence of a wide range of hemolytic, cytotoxic, and neurotoxic properties of associated cnidocytes venoms. The mauve stinger jellyfish Pelagia noctiluca (Scyphozoa) has been identified as direct causative agent for several documented fish mortality events both in Northern Europe and the Mediterranean Sea aquaculture farms. We investigated the effects of P. noctiluca envenomations on the gilthead sea bream Sparus aurata by in vivo laboratory assays. Fish were incubated for 8 hours with jellyfish at 3 different densities in 300 l experimental tanks. Gill disorders were assessed by histological analyses and histopathological scoring of samples collected at time intervals from 3 hours to 4 weeks after initial exposure. Fish gills showed different extent and severity of gill lesions according to jellyfish density and incubation time, and long after the removal of jellyfish from tanks. Jellyfish envenomation elicits local and systemic inflammation reactions, histopathology and gill cell toxicity, with severe impacts on fish health. Altogether, these results shows P. noctiluca swarms may represent a high risk for Mediterranean finfish aquaculture farms, generating significant gill damage after only a few hours of contact with farmed S. aurata. Due to the growth of the aquaculture sector and the increased frequency of jellyfish blooms in the coastal waters, negative interactions between stinging jellyfish and farmed fish are likely to increase with the potential for significant economic losses.Bosch-Belmar, Mar; M'Rabet, Charaf; Dhaouadi, Raouf; Chalghaf, Mohamed; Daly Yahia, Mohamed Néjib; Fuentes, Verónica; Piraino, Stefano; Kéfi-Daly Yahia, OnsBosch Belmar, Mar; M'Rabet, Charaf; Dhaouadi, Raouf; Chalghaf, Mohamed; Daly Yahia, Mohamed Néjib; Fuentes, Verónica; Piraino, Stefano; Kéfi Daly Yahia, On

    Connectivity-Mediated Ecohydrological Feedbacks and Regime Shifts in Drylands

    Get PDF
    Identified as essential mechanisms promoting alternative stable states, positive feedbacks have been the focus of most former studies on the potential for catastrophic shifts in drylands. Conversely, little is known about how negative feedbacks could counterbalance the effects of positive feedbacks. A decrease in vegetation cover increases the connectivity of bare-soil areas and entails a global loss of runoff-driven resources from the ecosystem but also a local increase in runoff transferred from bare-soil areas to vegetation patches. In turn, these global resource losses and local resource gains decrease and increase vegetation cover, respectively, resulting in a global positive and a local negative feedback loop. We propose that the interplay of these two interconnected ecohydrological feedbacks of opposite sign determines the vulnerability of dryland ecosystems to catastrophic shifts. To test this hypothesis, we developed a spatially explicit model and assessed the effects of varying combinations of feedback strengths on the dynamics, resilience, recovery potential, and spatial structure of the system. Increasing strengths of the local negative feedback relative to the global positive feedback decreased the risk of catastrophic shifts, facilitated recovery from a degraded state, and promoted the formation of banded vegetation patterns. Both feedbacks were most relevant at low vegetation cover due to the nonlinear increase in hydrological connectivity with decreasing vegetation. Our modelling results suggest that catastrophic shifts to degraded states are less likely in drylands with strong source–sink dynamics and/or strong response of vegetation growth to resource redistribution and that feedback manipulation can be useful to enhance dryland restoration.This work was supported by the research Projects DRYEX (CGL2014-59074-R) and DRYEX2 (CGL2017-89804-R), funded by the Spanish Ministry of Economy and Competitiveness, and the EC-funded Project CASCADE (GA283068). FR and SB acknowledge the financial support from the “Programa Estatal de Promoción del Talento y su Empleabilidad en I + D+i, Subprograma Estatal de Movilidad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016” (PRX14/00691 and PRX16/00583), funded by the Spanish Ministry of Education, Culture and Sports (MECD). FR also acknowledges the financial support from the Valencia Regional Government, Generalitat Valenciana (BEST/2014/285). AGM was supported by the EC-funded Marie Skłodowska-Curie Action ECOHYDRY (GA660859)

    Species diversity promotes facilitation under stressful conditions

    Get PDF
    Climate change is expected to lead to a drier world, with more frequent and severe droughts, constituting a growing threat to biodiversity, especially in drylands. Positive plant−plant interactions, such as nurse plants facilitating beneficiary communities in their understorey, could mitigate such climate‐induced stress. However, testing the real‐world relevance of nurse facilitation under drought requires accounting for interactions within the diverse beneficiary communities, which may reduce, or amplify the buffering effect of a nurse. Here, we investigated when and how the interactions among nurse plants and beneficiary community members buffered drought effects in a Mediterranean semiarid abandoned cropland. We transplanted sapling beneficiary communities of either one or three species either under a nurse or in open microsites for different soil moisture levels through watering. Net facilitative effects on survival and biomass were only observed when beneficiary communities were species‐diverse and under drought (without watering), meaning that under these conditions, facilitation provided by the nurse had larger positive effects than the negative effects stemming from competition with the nurse and among beneficiary species. Nurses appear to be generating these increases in survival and biomass in drought conditions via two mechanisms commonly associated with watering in open sites: they generate complementarity among the beneficiaries and shift traits to lower stress profiles. Contrasting with watering, which was found to enhance competitive hierarchy, our study shows that nurses appear to alter species dominance, favouring the less competitive species. Our results highlight three mechanisms (complementarity, competitive dominance, and trait plasticity) by which nurse species could mitigate the loss of biodiversity and biomass production due to water stress. Maintaining and supporting nurse species is thus a potentially pivotal approach in the face of projected increase in drought conditions for many drylands across the world

    Post-fire Regeneration Traits of Understorey Shrub Species Modulate Successional Responses to High Severity Fire in Mediterranean Pine Forests

    Get PDF
    Recurrent fires can impede the spontaneous recruitment capacity of pine forests. Empirical studies have suggested that this can lead to a prolonged replacement of pine forest by shrubland, especially if shrub species are pyrophytic. Model-based studies, however, have suggested that post-fire succession of pine forest under current climatic conditions will eventually tend towards the dominance of oaks under high fire severity and recurrence. These previous modelling studies did not address the role of the various post-fire regeneration traits of the understory shrub species. Considering the dichotomy of obligate seeder vs. resprouter species, either obligate or facultative resprouter, we hypothesized that when the shrubs present are post-fire seeders, the oaks steadily occupy the forest, whereas resprouter shrub species might compete with oaks and delay or arrest post-fire succession. To test this hypothesis, we developed a dynamic, cellular automaton model for simulating post-fire successional transitions in pine forests, including shrubs, pines and oaks, and stochastic fires of regular frequency. Our results showed a strong tendency towards oak dominance as final model state and a very reduced role of fire recurrence in this final state, with low yearly acorn input delaying oak dominance. Most relevantly, and in line with our hypothesis, the trend towards oak dominance depended markedly on the two types of shrub species, being delayed by resprouter species, which extended the shrub-dominated succession stage for several centuries. Our simulation results supported the view that the type of understorey species should be a key consideration in post-fire restoration strategies aiming to enhance fire resilience.This research has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the grant agreement no. 283068 (CASCADE project). Thanks are due to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020), through national funds and the post-doctoral research contract of Jacob Keizer (FCT-IF/01465/2015), and to the Spanish Ministry of Science and Innovation for financial support (CGL2017-89804-R) of the work of Susana Bautista. The work of Paula Maia was partially supported by the project SuSPiRe (PTDC/ASP-SIL/30983/2017) funded by FCT, through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)

    Geographical variation of multiplex ecological networks in marine intertidal communities

    Get PDF
    Understanding the drivers of geographical variation in species distributions, and the resulting community structure, constitutes one of the grandest challenges in ecology. Geographical patterns of species richness and composition have been relatively well studied. Less is known about how the entire set of trophic and non‐trophic ecological interactions, and the complex networks that they create by gluing species together in complex communities, change across geographical extents. Here, we compiled data of species composition and three types of ecological interactions occurring between species in rocky intertidal communities across a large spatial extent (~970 km of shoreline) of central Chile, and analyzed the geographical variability in these multiplex networks (i.e., comprising several interaction types) of ecological interactions. We calculated nine network summary statistics common across interaction types, and additional network attributes specific to each of the different types of interactions. We then investigated potential environmental drivers of this multivariate network organization. These included variation in sea surface temperature and coastal upwelling, the main drivers of productivity in nearshore waters. Our results suggest that structural properties of multiplex ecological networks are affected by local species richness and modulated by factors influencing productivity and environmental predictability. Our results show that non‐trophic negative interactions are more sensitive to spatially structured temporal environmental variation than feeding relationships, with non‐trophic positive interactions being the least labile to it. We also show that environmental effects are partly mediated through changes in species richness and partly through direct influences on species interactions, probably associated to changes in environmental predictability and to bottom‐up nutrient availability. Our findings highlight the need for a comprehensive picture of ecological interactions and their geographical variability if we are to predict potential effects of environmental changes on ecological communities
    corecore