365 research outputs found

    Tur\'annical hypergraphs

    Full text link
    This paper is motivated by the question of how global and dense restriction sets in results from extremal combinatorics can be replaced by less global and sparser ones. The result we consider here as an example is Turan's theorem, which deals with graphs G=([n],E) such that no member of the restriction set consisting of all r-tuples on [n] induces a copy of K_r. Firstly, we examine what happens when this restriction set is replaced just by all r-tuples touching a given m-element set. That is, we determine the maximal number of edges in an n-vertex such that no K_r hits a given vertex set. Secondly, we consider sparse random restriction sets. An r-uniform hypergraph R on vertex set [n] is called Turannical (respectively epsilon-Turannical), if for any graph G on [n] with more edges than the Turan number ex(n,K_r) (respectively (1+\eps)ex(n,K_r), no hyperedge of R induces a copy of K_r in G. We determine the thresholds for random r-uniform hypergraphs to be Turannical and to epsilon-Turannical. Thirdly, we transfer this result to sparse random graphs, using techniques recently developed by Schacht [Extremal results for random discrete structures] to prove the Kohayakawa-Luczak-Rodl Conjecture on Turan's theorem in random graphs.Comment: 33 pages, minor improvements thanks to two referee

    Coloring random graphs online without creating monochromatic subgraphs

    Full text link
    Consider the following random process: The vertices of a binomial random graph Gn,pG_{n,p} are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number rr of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph FF in the process. Our first main result is that for any FF and rr, the threshold function for this problem is given by p0(F,r,n)=n−1/m1∗(F,r)p_0(F,r,n)=n^{-1/m_1^*(F,r)}, where m1∗(F,r)m_1^*(F,r) denotes the so-called \emph{online vertex-Ramsey density} of FF and rr. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any FF and rr, the online vertex-Ramsey density m1∗(F,r)m_1^*(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that succeed in coloring Gn,pG_{n,p} as desired with probability 1−o(1)1-o(1) for any p(n)=o(n−1/m1∗(F,r))p(n) = o(n^{-1/m_1^*(F,r)}).Comment: some minor addition

    Triangle-Intersecting Families of Graphs

    Full text link
    A family of graphs F is said to be triangle-intersecting if for any two graphs G,H in F, the intersection of G and H contains a triangle. A conjecture of Simonovits and Sos from 1976 states that the largest triangle-intersecting families of graphs on a fixed set of n vertices are those obtained by fixing a specific triangle and taking all graphs containing it, resulting in a family of size (1/8) 2^{n choose 2}. We prove this conjecture and some generalizations (for example, we prove that the same is true of odd-cycle-intersecting families, and we obtain best possible bounds on the size of the family under different, not necessarily uniform, measures). We also obtain stability results, showing that almost-largest triangle-intersecting families have approximately the same structure.Comment: 43 page

    A composition theorem for the Fourier Entropy-Influence conjecture

    Full text link
    The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [FK96] seeks to relate two fundamental measures of Boolean function complexity: it states that H[f]≀CInf[f]H[f] \leq C Inf[f] holds for every Boolean function ff, where H[f]H[f] denotes the spectral entropy of ff, Inf[f]Inf[f] is its total influence, and C>0C > 0 is a universal constant. Despite significant interest in the conjecture it has only been shown to hold for a few classes of Boolean functions. Our main result is a composition theorem for the FEI conjecture. We show that if g1,...,gkg_1,...,g_k are functions over disjoint sets of variables satisfying the conjecture, and if the Fourier transform of FF taken with respect to the product distribution with biases E[g1],...,E[gk]E[g_1],...,E[g_k] satisfies the conjecture, then their composition F(g1(x1),...,gk(xk))F(g_1(x^1),...,g_k(x^k)) satisfies the conjecture. As an application we show that the FEI conjecture holds for read-once formulas over arbitrary gates of bounded arity, extending a recent result [OWZ11] which proved it for read-once decision trees. Our techniques also yield an explicit function with the largest known ratio of C≄6.278C \geq 6.278 between H[f]H[f] and Inf[f]Inf[f], improving on the previous lower bound of 4.615

    Intersecting Families of Permutations

    Full text link
    A set of permutations I⊂SnI \subset S_n is said to be {\em k-intersecting} if any two permutations in II agree on at least kk points. We show that for any k∈Nk \in \mathbb{N}, if nn is sufficiently large depending on kk, then the largest kk-intersecting subsets of SnS_n are cosets of stabilizers of kk points, proving a conjecture of Deza and Frankl. We also prove a similar result concerning kk-cross-intersecting subsets. Our proofs are based on eigenvalue techniques and the representation theory of the symmetric group.Comment: 'Erratum' section added. Yuval Filmus has recently pointed out that the 'Generalised Birkhoff theorem', Theorem 29, is false for k > 1, and so is Theorem 27 for k > 1. An alternative proof of the equality part of the Deza-Frankl conjecture is referenced, bypassing the need for Theorems 27 and 2
    • 

    corecore