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Abstract

We study versions of the contact process with three states, and with infections occurring at a rate
depending on the overall infection density. Motivated by a model described in Kéfi et al. (2007) for
vegetation patterns in arid landscapes, we focus on percolation under invariant measures of such processes.
We prove that the percolation transition is sharp (for one of our models this requires a reasonable
assumption). This is shown to contradict a form of ‘robust critical behaviour’ with power law cluster size
distribution for a range of parameter values, as suggested in Kéfi et al. (2007).
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction and background

Percolative systems with weak dependences, such as the contact process and its variants,
are in the spotlight of recent mathematical research. The present article studies versions of the
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two-dimensional contact process that are motivated by models for vegetation patterns in arid
landscapes, as put forward by biologists and agricultural researchers [14]. The central question
we address is whether or not the percolation transition for these modified contact processes is
sharp. This paper demonstrates the applicability of the sharpness techniques for two-dimensional
systems, even to quite realistic models, and provides a rigorous mathematical basis for the
discussion in the life-science literature [13–15,21,22].

The models and questions we consider are defined precisely in the following subsec-
tions. Briefly speaking, however, we consider two main modifications of the ‘standard’ two-
dimensional contact process. Firstly, rather than two states 0 and 1, we allow three states: −1, 0
and 1. Secondly, the transition rates are allowed to vary with the overall density of 1’s in the pro-
cess itself. Contact processes with three states have been considered by several authors before,
e.g. [23,24]. We consider two different types of 3-state contact processes, one of which is closely
related to the process in [24], the other of which has not previously appeared in the mathematical
literature. The second modification has, to the best of our knowledge, not been considered previ-
ously in the mathematical literature; we call such processes ‘density-driven’ (see Definition 1.1)
and prove their existence in Section 6.

Our main focus is the question of percolation in such processes: whether or not, under an in-
variant distribution of the process, there can be an unbounded connected set of 1’s. (For general
information on percolation we refer to [11,3].) For certain parameter values an unbounded con-
nected set of 1’s occurs with positive probability and for others not. As the parameters are varied,
one obtains in this sense a phase transition which we refer to as the percolation transition. In [14]
it is suggested, based on numerical simulation, that the type of model we consider may exhibit a
form of ‘robust critical behaviour’, different from the usual ‘sharp’ phase transition in standard
percolation models. We critically discuss this suggestion, based on rigorous results about the
percolation transition. Our main results, on sharpness of the transition and lack of ‘robustness’,
are stated in Theorems 2.4, 2.5, and 2.6.

The contact process is one of the most-studied interacting particle systems, see e.g. [19] and
references therein. Several multi-type variants have been studied; most of them have been pro-
posed as models in theoretical biology, and focus has typically been on the survival versus extinc-
tion of species. See, for example, Cox–Schinazi [7], Durrett–Neuhauser [8], Durrett–Swindle [9],
Konno–Schinazi–Tanemura [16], Kuczek [17], Neuhauser [23]. The question of percolation un-
der invariant distributions of the contact process was first studied by Liggett and Steif [20], and
a sharpness result for percolation under such distributions was first proved by van den Berg [26],
using some of the techniques introduced for Voronoi percolation in [4].

We begin by describing the type of model we consider in more detail.

1.1. Contact processes

The ordinary contact process on Zd is a Markov process with state space {0, 1}Z
d
. Elements

x ∈ Zd are called ‘sites’ or ‘individuals’. An element of {0, 1}Z
d

is typically denoted by
η = (ηx : x ∈ Zd) and those x ∈ Zd for which ηx = 1 are typically called ‘infected’. Infected
individuals recover at rate κ , independently of each other (often κ is set to 1). Alternatively, a
healthy site can become infected by an infected neighbour at rate λ. This occurs independently
for different sites and independently of the recoveries.

The main facts about the contact process are the following. For any λ ≥ 0 there exists an
upper invariant measure ν on {0, 1}Z

d
which can be obtained as the limiting distribution when

initially all sites are infected (this follows from standard monotonicity arguments [19]). For each
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κ > 0 there is a critical value λc = λc(κ) ∈ (0,∞) such that if λ ≤ λc then the process ‘dies
out’. This means that the only stationary distribution of the process is the point mass δ∅ on the
configuration consisting of all zeros, or equivalently ν = δ∅. On the other hand, if λ > λc
then there is positive chance that infection is transmitted indefinitely, and hence ν ≠ δ∅. In this
regime, there is more than one invariant distribution, each invariant distribution being a convex
combination of δ∅ and ν ≠ δ∅.

We now describe two variations of the ordinary contact process on which this paper focuses.
Both processes have three states, meaning that the processes take values in {−1, 0, 1}Z

d
.

1.1.1. Model A
The first process we consider has parameters κ, κ̃, λ, λ̃ and h, h̃. The state of a site may change

spontaneously from 1 to 0, from 0 to −1, from −1 to 0 or from 0 to 1, at rates κ, κ̃, h̃, h respec-
tively. Alternatively, a site which is in state −1 or 0 may change to state 0 or 1, respectively,
at a rate proportional to the number of nearest neighbours which are in state 1, the constants
of proportionality being given by λ̃ and λ, respectively. These transition rates are informally
summarized in the following table:

Spontaneous rates Neighbour rates
1→ 0 rate κ 0→ 1 rate λ·#(type 1 nbrs)
0→−1 rate κ̃ −1→ 0 rate λ̃·#(type 1 nbrs)
0→ 1 rate h
−1→ 0 rate h̃

If κ̃ = λ̃ = h̃ = h = 0 we thus essentially recover the ordinary 2-state contact process. If
κ̃ = λ̃ = h̃ = 0 but h > 0 we obtain what may be called the 2-state process with spontaneous
infection.

This 3-state process is closely related to a model proposed to study the desertification of arid
regions in [14]. The intuition is that 0 represents a ‘vacant’ patch of ‘good’ soil, 1 represents a
vegetated patch, and −1 represents a ‘bad’ patch of soil which must first be improved (to state
0) before vegetation can grow there. Type 1 patches can influence the states of neighbouring
patches either by spreading seeds (0 → 1) or improving the soil (−1 → 0), for example by
binding the soil better with roots. Much less is known about this 3-state process than about the
ordinary contact process with two states. To a large extent this is because the notion of ‘path’
along which infection spreads is no longer sufficient. In particular, we do not know if there is
a unique stationary distribution if all the parameters are strictly positive, as is the case for the
2-state process with spontaneous infection. However, most of our results on the 3-state process
are conditional on the assumption that there is a unique stationary distribution ν in this situation.
A more precise formulation of the assumption is stated in Assumption 2.2.

1.1.2. Model B
The second process we study is close to a process studied by Remenik [24]. The parameters

are κ, κ⋆, λ, h, h̃, and the transitions are summarized in the following table.

Spontaneous rates Neighbour rates
1→ 0 rate κ 0→ 1 rate λ·#(type 1 nbrs)
(0 or 1)→−1 rate κ⋆

0→ 1 rate h
−1→ 0 rate h̃
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Thus a site changes state to−1 at rate κ⋆ regardless of the current state, and transitions out of
the state−1 occur at a rate independent of the number of type 1 neighbours. In light of this obser-
vation, it is possible to interpret Model B as (ordinary) contact process in a random environment.

In the case h = 0 this process is the one studied in [24]. Remenik puts it forward as a model
for the spread of vegetation, with a slightly different interpretation of transitions to state −1
than in Model A. In Remenik’s model the interpretation is that “if a site becomes uninhabitable,
the particles living there will soon die” (quote from [24]). In Model A, however, transitions to
−1 only occur for uninhabited sites (in state 0) with the motivation that they “may undergo
further degradation, for example, by processes such as erosion and soil-crust formation” (quote
from [14]).

Model B is considerably easier to study than Model A. Indeed, for the case h = 0, Remenik
interpreted the model as a hidden Markov chain and, building on results by Broman [6], proved
strong results such as complete convergence. A key tool to obtaining this result is a duality
relation, which fails for Model A. For the case h > 0, exponential convergence to a unique
invariant distribution is stated in Lemma 2.1.

1.2. Density-driven contact processes

It is straightforward to generalize the definitions of the contact processes we consider to allow
time-varying infection rates λ(t) and h(t) (see Section 4.1 for more on this). Furthermore, in the
context of vegetation spread it seems natural to allow the rates governing transitions from state 0
to 1 (λ and h) to depend on the overall density of 1’s in the process itself. For example, one may
imagine that seeds can be blown over large distances to spread vegetation, and that whether a seed
which has landed on a vacant piece of soil indeed becomes a plant may depend on the overall
competition of the other plants. Indeed, the model proposed in [14] includes such a mechanism.
The model there is defined in discrete time and in a finite region, and it is not immediately
obvious that it is possible to define such a process in continuous time and on the infinite graph
Zd . However, in Section 6 we prove the existence of the following class of processes.

Let X (t) be a translation invariant 3-state process (Model A or B), and write ρ(t) = P(X0(t)
= 1) for the density of the process.

Definition 1.1 (DDCP). Let the functions Λ, H : [0, 1] → [0,∞) be given, and let X (t) be a
translation-invariant 3-state contact process with parameters κ , κ̃ , λ̃, h̃ and λ(·), h(·) in Model
A or with parameters κ , κ⋆, h̃, and λ(·), h(·) in Model B. This process is called a density-driven
contact process specified by Λ and H if λ, h satisfy λ(t) = Λ(ρ(t)) and h(t) = H(ρ(t)) for all
t ≥ 0.

We use the abbreviation DDCP for ‘density-driven contact process’. Intuitively a DDCP con-
stantly updates its infection rates based on the current prevalence of 1’s.

1.3. Outline

In Section 2 we state our main results, which concern on the one hand ‘sharpness’ and on the
other ‘lack of robustness’. In Section 3 we prove our results on lack of robustness, deferring the
proofs of our sharpness results to Section 5. In Section 4 we describe methods and results from
the literature which are needed for the proofs of our main sharpness results. Section 5 contains
the proofs of our sharpness result (Theorem 2.6). In Section 6, we prove in general the existence
of density-driven processes.
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2. Main results

We first formulate a condition about exponentially fast convergence to a unique equilibrium
measure for Model A. For Model B, this assumption can be established using standard
techniques. Subsequently, we formulate our results on lack of robustness (in Section 2.2) and
sharpness (in Section 2.3).

2.1. Convergence to equilibrium

Consider Models A and B with constant parameters. Henceforth, we assume that all parame-
ters are positive, so we assume κ, κ̃, λ, λ̃, h, h̃ > 0 for Model A and κ, κ⋆, λ, h, h̃ > 0 for Model
B.

It is well-known (and can be easily proved by a standard coupling argument using the graph-
ical representation, see Section 4.1) that the assumption h > 0 implies exponentially fast con-
vergence to equilibrium in Model B. For any ξ ∈ {−1, 0, 1}Z

d
let us write µξt for the law of the

contact process with initial state ξ . Further, for a finite set Λ ⊆ Zd let µξt;Λ denote the restric-

tion of µξt to Λ. Similarly, let νΛ denote the restriction of the upper invariant measure ν to Λ
(i.e., marginal of µξt on {−1, 0, 1}Λ).

Lemma 2.1. For Model B with h > 0 and any initial state ξ we have that

dtv(µ
ξ

t;Λ, νΛ) ≤ |Λ|e
−ht .

For Model A we have not been able to establish exponential convergence to equilibrium along
the lines of Lemma 2.1. However, it is natural to suppose that such a result should hold when
all parameters κ, κ̃, λ, λ̃, h, h̃ > 0. Our results for Model A rely on such a convergence result,
which we now formulate:

Assumption 2.2 (Exponential Convergence to Equilibrium). For Model A with strictly positive
parameters

1. there is a unique stationary distribution ν, and
2. there are constants C1,C2 > 0 such that for all finite Λ ⊆ Zd and all initial configurations ξ

we have

dtv(µ
ξ

t;Λ, νΛ) ≤ C1|Λ|e−C2t .

The particular places where Assumption 2.2 is needed are in Lemma 4.4 and in the proof of
Theorem 2.6 at the end of Section 5.2.

Here are some heuristic arguments supporting the assumption. First, as already noted the
assumption holds straightforwardly in Model B, and it also holds for the two-state contact process
with spontaneous infections which may be obtained from Model A by setting κ̃ = λ̃ = h̃ = 0.
Compared to the 2-state process, the extra state −1 in the 3-state process introduces ‘delays’
during which particles are insensitive to infection attempts. The delay periods are of random
length but with exponential tails, and hence we do not expect the qualitative properties of
convergence speed to equilibrium to be different from the 2-state case. Also, by standard general
arguments (see [18, Theorem 4.1]), Assumption 2.2 holds for a certain parameter range, namely
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when the ‘spontaneous rates’ are sufficiently large compared with the ‘neighbour rates’. Finally,
if we couple the system starting with all sites having value −1 with the system starting with
all sites having value 1, it seems, intuitively, that the rules of the coupled dynamics provide a
stronger tendency to eliminate existing disagreement sites (i.e. sites where the two systems differ
in value) than to create new disagreement sites. However, we have not been able to turn this into
a proof.

2.2. Percolation and the question of robustness

For any configuration η ∈ {−1, 0, 1}Z
d
, consider the subgraph induced by sites in state 1 and

the nearest-neighbour relation. Let C0 denote the connected component of the subgraph of 1’s
containing the origin 0, and write |C0| for the number of sites in C0. If ν is a probability measure
on {−1, 0, 1}Z

d
, we say that percolation occurs under ν if ν(|C0| = ∞) > 0. For the rest of this

section we fix d = 2.
A major focus of this article is to study the phenomenon of percolation when ν is an invariant

measure of a 3-state contact process, possibly density-driven. Indeed, one of the main motivations
is an intriguing suggestion in [14] concerning a specific version of the density-driven Model A
(with explicitly given forms of the functions h(t) and λ(t), involving certain parameters). In our
context (where the medium is the infinite lattice and time is continuous) that version is given
by the functions in (2.1). The suggestion in [14] is that this model has a form of ‘robust critical
behaviour’: that there is a non-negligible set of parameter values for which the model has an
invariant measure under which the size of an occupied cluster has a power-law distribution.

As the authors of [14] remark, such behaviour is different “from classical critical systems,
where power laws only occur at the transition point”. Further, the authors suggest that this
uncommon behaviour may be explained by strong local positive interactions. (The latter means
that the transitions from−1 to 0 and the transitions from 0 to 1 are ‘enhanced’ by the presence of
occupied sites in the neighbourhood.) Later in their paper they argue that an important aspect to
explain their ‘observed’ robust critical behaviour would be that ‘disturbances’ (transitions to the
−1 state) do not affect directly the occupied sites: they first have to change to the 0 state, which
“constrains the spatial propagation of the disturbance”. In later life-sciences papers the robust
criticality is debated [13,15,21,22].

The arguments in [14] and those in the articles mentioned above lack mathematical rigour. Our
aim is to contribute by lifting the discussion to a rigorous mathematical level, and by proving
mathematical theorems that are relevant for the above mentioned discussion. Our following
result, Theorem 2.4, shows (under Assumption 2.2) that in our formulation of the model in [14],
criticality is rare, in a strong and well-defined sense. We also show a more general though weaker
statement of a similar form (Theorem 2.5).

Definition 2.3. We call a distribution ν on {−1, 0, 1}Z
2

critical (for percolation) if ν(|C0| ≥ n)
converges to zero subexponentially; that is, ν(|C0| ≥ n)→ 0 as n→∞, but

lim inf
n→∞

− log ν(|C0| ≥ n)

n
= 0.

Calling such a distribution ν ‘critical’ may be somewhat imprecise, partly as it seems to ignore
the possibility of a discontinuous phase transition. However, the name is meant to capture the idea
that power law cluster sizes are associated with critical behaviour.
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The precise form of the DDCP corresponding to the model in [14] is given by

Λ(ρ) = β
1− δ

4
(ε − gρ),

H(ρ) = βδ ρ (ε − gρ),
(2.1)

where β, ε and g are positive parameters and δ ∈ (0, 1). This choice of functions is motivated in
the Methods supplement to [14]. Briefly, β represents the seed production rate, δ the fraction of
seeds that are spread over long distances, ε the establishment probability of a seed not subject to
competition, and g a competitive effect due to the presence of other plants.

For the DDCP where λ and h are density-dependent and given by (2.1) we have the following
result:

Theorem 2.4 (Lack of Robustness). Let d = 2 and recall Definition 2.3.

I Model A. Consider Model A under Assumption 2.2, with Λ(·) and H(·) given by (2.1). Then
for almost all κ, κ̃, λ̃, h̃, β, δ, ε and g, the 3-state DDCP does not have a critical
invariant measure.

I Model B. Similarly, consider Model B with Λ(·) and H(·) given by (2.1). Then for almost all
κ, κ⋆, h̃, β, δ, ε and g, the 3-state DDCP does not have a critical invariant measure.

We also have the following result, which on the one hand holds for much more general Λ, H ,
but on the other hand has a weaker conclusion. We say that two functions f, g: [0, 1] → R differ
at most ε if | f (r)−g(r)| < ε for all r ∈ [0, 1]. The result is formulated and proved for Model A,
but straightforwardly extends to Model B as well (with Assumption 2.2 replaced by Lemma 2.1).

Theorem 2.5. Let Λ, H be continuous, strictly positive functions, and suppose the 3-state DDCP

with dynamics given by Model A and parameters κ, κ̃, λ̃, h̃ > 0 and Λ, H > 0 has a critical
invariant distribution. Then, under Assumption 2.2, for every ε > 0 there are parameters
κ ′, κ̃ ′, λ̃′, h̃′ and Λ′, H ′ which each differ at most ε from the original parameters, and for which
the corresponding DDCP has no critical invariant measure.

Theorems 2.4 and 2.5 are proved in Section 3. These results cast considerable doubt on the
suggestions in [14] discussed in the beginning of this section.

2.3. Sharpness of percolation transitions

The main step in proving Theorems 2.4 and 2.5 is to establish sharpness results for percolation
under the invariant measures of contact processes, which we state in this section. Such results
are also of independent interest. Given these sharpness results, the proofs of Theorems 2.4 and
2.5 are relatively elementary. For x, y ∈ Rk we use the notation x ≺ y to indicate that each
coordinate of x is strictly smaller than the corresponding coordinate of y.

For Model A, we require Assumption 2.2 (which, for Model B, has been verified in
Lemma 2.1). By comparison with Bernoulli percolation it follows immediately that ν(|C0| =

∞) > 0 provided h, h̃ are large enough, or h̃ > 0 and h is large enough. In Section 5 we prove
the following result.

Theorem 2.6 (Sharpness for 3-State Contact Process). Consider the 3-state contact process with
d = 2.
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I Model A. Fix κ, κ̃ > 0. Under Assumption 2.2 we have the following. If the parameters
λ, λ̃, h, h̃ > 0 are such that ν(|C0| = ∞) = 0, then whenever (λ′, λ̃′, h′, h̃′) ≺
(λ, λ̃, h, h̃), there is c > 0 such that ν(|C0| ≥ n) ≤ e−cn for all n ≥ 1.

I Model B. Fix κ, κ⋆ > 0. If the parameters λ, h, h̃ > 0 are such that ν(|C0| = ∞) = 0, then
whenever (λ′, h′, h̃′) ≺ (λ, h, h̃), there is c > 0 such that ν(|C0| ≥ n) ≤ e−cn for
all n ≥ 1.

Theorem 2.6 has the following consequence, which will be used in the proof of Theorem 2.4 in
Section 3.2. For fixed κ, κ̃/κ⋆, λ, λ̃, h̃ > 0 define hp = hp(λ) := inf


h ≥ 0 : ν(|C0| = ∞) > 0


.

Corollary 2.7. Consider the 3-state contact process with d = 2.

I Model A. Under Assumption 2.2, for all κ, κ̃ > 0 and almost all λ̃, h̃ > 0 the following
holds: for all but countably many λ > 0, if h < hp(λ) then ν(|C0| ≥ n) ≤ e−cn

for some c > 0 and all n ≥ 1.
I Model B. For all κ, κ⋆ > 0 and almost all h̃ > 0 the following holds: for all but countably

many λ > 0, if h < hp(λ) then ν(|C0| ≥ n) ≤ e−cn for some c > 0 and all n ≥ 1.

Remark 2.8. The 2-state contact process with spontaneous infection can be obtained from
Model B by letting h̃ = κ⋆ = 0 (the state −1 thus plays no role). Although our results are
formulated under the assumption that all parameters are positive, it may be seen quite straight-
forwardly from the proofs that all results of Section 2 apply also to this model.

Remark 2.9. A straightforward modification of the proof of Corollary 2.7 gives the following
statement for Model A. Under Assumption 2.2, for all κ, κ̃ > 0, and almost all λ̃, h̃ > 0, the
following holds for all but countably many h > 0: if λ < λp(h) := inf


λ ≥ 0 : ν(|C0| = ∞) >

0


then ν(|C0| ≥ n) ≤ e−cn for some c > 0 and all n ≥ 1. In other words, for almost all choices
of the parameters λ̃, h, h̃, κ, κ̃ there is at most one value of λ for which ν(|C0| ≥ n) goes to 0
slower than exponentially. We may deduce a similar statement for Model B.

Remark 2.10. Our arguments do not, however, allow us to go beyond the “almost all” in Corol-
lary 2.7 (and Remark 2.9). That is, we are not able to prove that the percolation transition in h
(respectively, λ) is sharp for arbitrary fixed values of the other parameters. More generally, we
have not proved the stronger version of Theorem 2.6 where just one (instead of all) the ‘good’
parameters are decreased.

The essential difficulty is, informally, the following. To obtain such a stronger version of The-
orem 2.6, we need to suitably compare the effect of a small change of one parameter with the
effect of changes of other parameters. Some comparisons are simple: it is easy to see that the
system obtained by increasing h by ε, dominates the system obtained by increasing λ by ε/4.
However, it is not obvious how (e.g.) to compare an increase in h with an increase in h̃. Al-
though there is a general approach to such and related problems (see e.g. [1] and Sections 3.2
and 3.3 in [11]) the concrete applicability of that approach depends very much on the details
of the model. Moreover, as pointed out in [2], even in some ‘classical’ percolation models, the
technical problems that arise are more delicate than expected earlier.

Therefore, and because our current version of Theorem 2.6 is strong enough to obtain Theo-
rem 2.4 (and the statement of this latter theorem would not essentially benefit from the mentioned
stronger version of the former), we do not pursue such improvements in this paper.
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3. Proofs of nonrobustness for density-driven processes

In this section we prove Theorems 2.4 and 2.5 on lack of robustness in the model proposed
in [14] assuming the sharpness results of Corollary 2.7. We begin with a discussion about the
stationary distributions of DDCP.

3.1. Stationary distributions for density-driven processes

We first consider Model A. Let κ, κ̃, λ̃, h̃ > 0 be fixed. Let X (t), t ≥ 0, be a DDCP for the
parameters κ , κ̃ , λ̃, h̃, Λ and H . Suppose that X is stationary, i.e. the distribution of X (t) is
constant in t . Denote this distribution by ν. By stationarity, the occupation density ρ(t) of X (t)
is constant, say ρ(t) ≡ ρ. Writing λ = Λ(ρ) and h = H(ρ) we thus find that ν is a stationary
distribution for the contact process with constant parameters λ, h, κ , κ̃ , λ̃, and h̃.

Suppose Λ(ρ), H(ρ) > 0 for all ρ ∈ [0, 1]. Since by Assumption 2.2 there is only one
stationary distribution ν, it follows that ν = ν. Let ρ(λ, h) = ν({η : η0 = 1}) denote the density
of ν. It follows that λ and h satisfy the fixed point equations λ = Λ(ρ(λ, h)) and h = H(ρ(λ, h)),
respectively. Conversely, if h and λ satisfy these fixed point equations, then ν is stationary for
the DDCP defined by Λ, H . We summarize these findings in the following proposition:

Proposition 3.1. Let κ , κ̃ , λ̃, h̃ > 0 be fixed. Suppose Λ(ρ), H(ρ) > 0 for all ρ ∈ [0, 1]. Then,
under Assumption 2.2, the stationary distributions of the 3-state DDCP specified by Λ, H are
precisely the measures ν for λ, h satisfying λ = Λ(ρ(λ, h)) and h = H(ρ(λ, h)).

The corresponding result is valid for Model B.

3.2. Proof of Theorem 2.4

We prove the theorem using Corollary 2.7. Writing γ1 = β(1 − δ)/4 and γ2 = βδ, it is
sufficient to prove the following claim: For almost all κ , κ̃/κ⋆, h̃, γ1, γ2, ε and g, the DDCP with
Λ(ρ) = γ1(ε − gρ) and H(ρ) = γ2ρ(ε − gρ) does not have a critical invariant measure. In the
argument that follows we will frequently use the fact that the product of a measure zero set with
any measurable set has measure zero.

We give a proof for Model A only, the proof for Model B is similar. For fixed κ, κ̃, λ̃, h̃ we call
λ bad if ν(|C0| ≥ n) does not decay exponentially for all h < hp(λ). For all κ, κ̃ and almost all
λ̃, h̃, Corollary 2.7 implies that the set of bad λ > 0 is at most countable. We henceforth assume
that κ, κ̃, λ̃, h̃ are fixed and chosen so that the set of bad λ is at most countable.

Suppose the DDCP has a critical invariant measure ν. Note that, since ν is invariant, ρ, λ, h do
not vary with t , and that, since ν is critical, ρ, and hence λ and h, are >0. We now consider the
two cases, λ ‘bad’ or not. Here is a brief summary of the argument that follows. In the case when
λ is not bad we use the fact that h, and hence also ρ, is then a function of λ only. These additional
constraints, together with (2.1), allow us (roughly speaking) to write the remaining parameters
in terms of λ and then to deduce the result from the precise form of this expression (see (3.4)).
In the case when λ is bad it suffices to show that the set of possible choices of the remaining
parameters has measure zero, since there are only countably many such λ. This is done by using
(2.1) and Proposition 3.1 to write additional relations among these parameters.

We now turn to the argument proper. If λ is not bad then, since ν is critical, h must equal
hp(λ). Hence the following two equations hold, where ρp(λ) = ρ(λ, hp(λ)) denotes the density
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of the upper invariant measure with parameters λ and h = hp(λ):

λ = γ1(ε − gρp(λ)), (3.1)

h = hp(λ) = γ2ρp(λ)(ε − gρp(λ)). (3.2)

To prove the claim, fix also g and γ1. With these parameters fixed, it is clear that for each λ
there is at most one ε such that (3.1) holds. Hence the measure of the set of pairs (λ, ε) such that
(3.1) holds is zero. It follows from Fubini’s theorem that for almost all ε the set L = L(ε) =
L(ε, κ, g, γ1) of those λ for which (3.1) holds has Lebesgue measure 0. (Note that ρp(λ) is
measurable since ρ(λ, h) and hp(λ) are measurable.) Now also fix (besides the above mentioned
parameters which were already fixed) the parameter ε such that L indeed has measure 0. Note
that for each λ there is at most one γ2 such that (3.2) holds. Let L ′ ⊂ L be the set of those λ ∈ L
for which there is indeed such a γ2. Rearranging (3.2) we can write this γ2 as a function of λ ∈ L ′:

γ2 =
hp(λ)

ρp(λ)(ε − gρp(λ))
.

Using (3.1), we can ‘eliminate’ ρp(λ) from the above expression for γ2 and get

γ2 =
hp(λ)gγ 2

1

λ(εγ1 − λ)
, λ ∈ L ′. (3.3)

Write the right hand side of (3.3) as a function

F(λ) :=
hp(λ)gγ 2

1

λ(εγ1 − λ)
. (3.4)

We want to show that F(L ′) has measure 0. To do this, we note that hp(λ) is uniformly
Lipschitz continuous in λ: for each α ≥ 0, the process with parameters λ + α and h is stochas-
tically dominated by the process with parameters λ and h + 4α (this is intuitively obvious from
the description of the dynamics, and can be easily proved using the graphical representation of
Section 4.1), so

hp(λ) ≥ hp(λ+ α) ≥ hp(λ)− 4α. (3.5)

Hence the numerator in the definition of the function F above is locally Lipschitz. It follows that
F is locally Lipschitz outside the point λ = εγ1. Hence, since L ′ has measure 0, F(L ′) also has
measure 0 (any cover of L ′ with ‘small’ intervals is mapped under F to a cover of F(L ′) with
comparably small intervals).

We next consider the case when λ is bad. For a fixed bad λ, we can use Proposition 3.1 to
write ρ = ρ(h). We can no longer conclude that h = hp(λ), but we still have the relations

λ = γ1(ε − gρ(h)), and h = γ2ρ(h)(ε − gρ(h)). (3.6)

We aim to show that, for each fixed bad λ, the set of choices of the parameters γ1, γ2, ε, g such
that (3.6) holds has measure zero. This concludes the proof since a countable union of measure
zero sets has measure zero.

If (3.6) holds, we may rearrange to obtain the relations

ρ(h) =
γ1

λγ2
h, and ε =

λ

γ1
+ gρ(h) =

λ

γ1
+ g

γ1

λγ2
h. (3.7)
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We now fix arbitrary γ2, g > 0. Then for almost all γ1, the first relation in (3.7) can only hold
for h in a set of measure zero. This follows from Fubini’s theorem (using polar coordinates) and
the fact that the set {(h, ρ(h)) : h > 0} has two-dimensional Lebesgue measure zero. We now
fix γ1 such that the first relation in (3.7) only holds for h in a set of measure zero. It follows that
the second relation in (3.7) can only hold for ε in a set of measure zero. Using Fubini’s theorem
again this concludes the proof. �

3.3. Proof of Theorem 2.5

Consider Model A with parameters κ , κ̃ , λ, λ̃, h, h̃, all strictly positive. Under Assumption 2.2,
there is a unique invariant distribution ν for this process, and we have (as stated precisely
in the same assumption) exponentially fast convergence to that distribution, from any starting
distribution. Recall that ρ denotes the density of ν (i.e. the probability under ν that a given vertex
has value 1).

Lemma 3.2. ρ is continuous from the right in each of the parameters λ, λ̃, h and h̃.

Proof. Let µt denote the distribution at time t if we start the process with all vertices in state 1.
By uniqueness, ν is the limit, as t →∞, ofµt . From Lemma 4.1 we have thatµt is stochastically
increasing in each of the parameters h, h̃, λ and λ̃ (and stochastically decreasing in κ and κ̃).
Also by obvious monotonicity, µt is stochastically decreasing in t . For each t ≥ 0 the density
ρ(t) under µt is continuous in each of the parameters λ, λ̃, h, h̃, and by the above we have
that ρ(t) ↘ ρ. The result follows since we can interchange the order of any two decreasing
limits. �

Proof of Theorem 2.5. Let ν denote the critical invariant measure mentioned in the statement
of the theorem. Let ρ denote its density, and let λ = Λ(ρ) and h = H(ρ). Then, as in
Proposition 3.1, ν is invariant under the 3-state contact process dynamics with parameters κ ,
κ̃ , λ, λ̃, h, h̃. Hence, under Assumption 2.2, ν is the unique measure ν for these parameters. So
we have

λ = Λ(ρ(κ, κ̃, λ, λ̃, h, h̃)), and

h = H(ρ(κ, κ̃, λ, λ̃, h, h̃)).

Now we increase each of the ‘good’ parameters λ, λ̃, h and h̃ by an amount ∈ (0, ε/2) so small
that

Λ(ρ(κ, κ̃, λ, λ̃, h, h̃)) and H(ρ(κ, κ̃, λ, λ̃, h, h̃))

change by at most ε/2. This is possible by the continuity of Λ and H and Lemma 3.2. Denote
the new parameters by κ ′ = κ , κ̃ ′ = κ̃ , λ′, λ̃′, h′, h̃′. From the above it follows that there are
continuous functions Λ′ and H ′ which differ at most ε from Λ and H respectively, such that

λ′ = Λ′(ρ(κ ′, κ̃ ′, λ′, λ̃′, h′, h̃′)), and

h′ = H ′(ρ(κ ′, κ̃ ′, λ′, λ̃′, h′, h̃′)).

(For example, one may take Λ′(r) = Λ(r) + λ′ − Λ(ρ(κ ′, κ̃ ′, λ′, λ̃′, h′, h̃′)), and take H ′ in
a similar way.) Let ν′ be the invariant measure for the contact process with fixed parameters
κ ′, κ̃ ′, λ′, λ̃′, h′, h̃′. From the above we conclude that ν′ is invariant under the DDCP dynamics
with parameters κ ′, κ̃ ′, λ̃′, h̃′, Λ′ and H ′, and each of these ‘new’ parameters differs at most
ε from the corresponding ‘old’ one. Moreover, by Theorem 2.6, this ν′ is not critical. This
completes the proof. �
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4. Ingredients from the literature

In this section we discuss a number of results and methods needed for the proofs of our main
sharpness result, Theorem 2.6. First we discuss graphical representations for contact processes,
then some methods from percolation theory as well as influence results.

4.1. Graphical representations

Central to the study of the contact process is a graphical representation in terms of Poisson
processes of ‘marks’ and ‘arrows’. For Model A this is as follows. We write D1 and D2 for
independent Poisson processes on Zd

× [0,∞) of intensities κ and κ̃ , which we think of as the
processes of ‘down’ marks (1 → 0 and 0 → −1, respectively). Independently of these and of
each other we define Poisson processes U1 and U2 of ‘up’ marks (0 → 1 and −1 → 0) of
respective intensities h and h̃. Finally, independently of all these and of each other we define
Poisson processes A1 and A2 of arrows (0 → 1 and −1 → 0, respectively) with respective
intensities λ and λ̃ on the ordered nearest-neighbour sites xy times [0,∞). The rates of these
processes are summarized in the following table:

Spontaneous transitions Neighbour transitions
(on {x} × [0,∞)) (on {xy} × [0,∞))
D1 rate κ A1 rate λ
D2 rate κ̃ A2 rate λ̃
U1 rate h
U2 rate h̃

The interpretation of the Poisson processes is as usual with interacting particle systems: At a
point (x, t) ∈ U1 the site x changes from 0 to 1 (it does not change if it was in state −1 or 1
before), if (xy, t) ∈ A1 and the process is in state 1 at x and in state 0 at y, then y changes to 1,
etc. It will later (in Section 5) be useful to focus on the process of incoming arrows on each line
{y}× [0,∞), that is the collection of arrows at points (xy, t) for x a neighbour of y. For all y the
incoming arrows form Poisson processes, of intensities 2dλ and 2dλ̃ for A1 and A2 respectively.

We also consider the three state process with time-varying parameters λ and h. Such process
is easily defined via its graphical representation. Let λ(·) and h(·) be nonnegative integrable
functions, and let A1 and U1 be independent Poisson processes of rates λ(·) and h(·), respectively.

The process has the following monotonicity in the initial condition and in the graphical
representation. Let X denote the 3-state process with initial state ξ ∈ {−1, 0, 1}Z

d
and graphical

representation D1, D2, U1, U2, A1 and A2, and let X ′ denote the process with initial condition
ξ ′ ∈ {−1, 0, 1}Z

d
and graphical representation D′1, D′2, U ′1, U ′2, A′1 and A′2. If the following hold,

then X ′(t) ≥ X (t) for all t ≥ 0: ξ ′ ≥ ξ , D′1 ⊆ D1, D′2 ⊆ D2, U1 ⊆ U ′1, U2 ⊆ U ′2, A1 ⊆ A′1 and
A2 ⊆ A′2.

An analogous construction exists for Model B. The only changes are that the Poisson process
D2 has intensity κ⋆, and represents transition to state −1 irrespective of the previous state.
Further, there is no process A2 for Model B.

The monotonicity statement for these processes reads as follows.

Lemma 4.1 (Monotonicity). Model A is (stochastically) increasing in the initial state and the
parameters λ, λ̃, h, h̃ and decreasing in κ, κ̃ . Model B is (stochastically) increasing in the initial
state and the parameters λ, h, h̃ and decreasing in κ, κ⋆.
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This monotonicity property implies for both processes that if the initial state ξ consists of
only 1’s then the distribution of the process at time t is stochastically decreasing in t . Standard
arguments then imply that the process decreases (stochastically) to a limiting distribution, which
in both cases we denote by ν and call the upper invariant measure.

4.2. Finite-size criterion

Next we present a so-called finite-size criterion for percolation. Its analog for Bernoulli per-
colation is a well-known classical result which, as pointed out in [26] (see Lemma 2.3 in that
paper), can be generalized to the case where the configurations come from the supercritical ordi-
nary contact process. The same arguments as in [26] yield our Lemma 4.2.

Let d = 2 and let H(m, n) denote the event that there is a left–right crossing of the rectangle
[0,m]×[0, n] (i.e., that the subgraph of [0,m]×[0, n] spanned by sites in state 1 contains a path
from some (0, x) to some (m, y) where 0 ≤ x, y ≤ n). Let V (m, n) denote the event that there
is an up–down crossing of the rectangle [0,m] × [0, n].

Lemma 4.2 (For Model A we assume Assumption 2.2 here). There is a (universal) constant
ε̂ > 0 such that the following holds for Model A under Assumption 2.2 and for Model B.
For all strictly positive values of the parameters, there is n̂ (depending on the parameters) such
that

(1) If for some n ≥ n̂ we have ν(V (3n, n)) < ε̂, then there is c > 0 such that ν(|C0| ≥ k) ≤ e−ck

for all k ≥ 0.
(2) If for some n ≥ n̂ we have ν(H(3n, n)) > 1− ε̂, then ν(|C0| = ∞) > 0.

4.3. An influence result

We further need the following combination of the Margulis–Russo formula and an influence
result which essentially comes from Talagrand’s paper [25] (which in turn is closely related
to [12]), where all the pi ’s in the description below are equal. For our particular situation we
straightforwardly generalized the form (with two different pi ’s) in [26, Corollary 2.9]. See also
e.g. [10,4,5].

Let X = (X i, j : 1 ≤ i ≤ m, 1 ≤ j ≤ n) be a collection of independent {0, 1}-valued random
variables such that

P(X i, j = 1) = pi for all j ∈ {1, . . . , n}.

For fixed i, j , let X (i, j) denote the random vector obtained from X by replacing X i, j with 1−X i, j
(and keeping all other X i ′, j ′ the same). For an event A, define the influence of X i, j on A as

Ii, j (A) = P({X ∈ A} △ {X (i, j)
∈ A}),

where △ denotes symmetric difference.

Lemma 4.3. Fix k ∈ {1, . . . ,m} and suppose that H is an event which is increasing in the X i, j
for i ≤ k, and decreasing in the X i, j for i ≥ k + 1. Let N denote the number of indices (i, j)
such that Ii, j (H) is maximal. There is an absolute constant K such that

k
i=1

∂

∂pi
P(H)−

m
i=k+1

∂

∂pi
P(H) ≥

P(H)(1− P(H))

K maxi pi log(2/min
i

pi )
log N .
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For our application, m represents the number of different types of symbols. We apply it with
m = 6 and k = 4 for Model A, and with m = 5 and k = 3 for Model B.

4.4. RSW-result

The following result is usually referred to as a RSW-type result as this type of result was
pioneered, for Bernoulli percolation, in papers by Russo, Seymour and Welsh. A highly non-
trivial extension of (a weak version of) the original RSW-result to a dependent percolation model,
namely the random Voronoi model, was proved by Bollobás and Riordan [4] (and modified
in [27] to a form which is closer to Lemma 4.4). As pointed out in [4], the result holds under
quite mild geometric, positive-association and spatial mixing conditions. In [26] (see Proposition
2.4 in that paper) it is explained that these conditions hold for the supercritical ordinary contact
process. The same arguments hold for our models.

Lemma 4.4. Consider the upper invariant measure ν for Model A under Assumption 2.2 or
Model B with h > 0. If for some α > 0 we have lim supn→∞ ν(H(αn, n)) > 0 then for all α > 0
we have lim supn→∞ ν(H(αn, n)) > 0.

5. Proofs of sharpness results

In this section we prove Theorem 2.6 and Corollary 2.7. Here is an outline of the argument
that follows. Suppose ν is an invariant measure for which the cluster size |C0| does not have ex-
ponential tails. The first part of Lemma 4.2 together with Lemma 4.4 imply that certain crossing
probabilities then have uniformly positive probability under ν. We want to apply Lemma 4.3 to
show that, with an arbitrarily small increase of the relevant parameters, we can ‘boost’ this to
get crossing probabilities close to 1. The second part of Lemma 4.2 then tells us that |C0| is now
infinite with positive probability.

One of the main technical obstacles with carrying out this argument is that Lemma 4.3 ap-
plies to events which are defined in terms of a finite number of Bernoulli variables, whereas
contact processes are defined in terms of ‘continuous’ objects (Poisson processes). The first
step is therefore a stability coupling, a type of coupling which was also used in [4] for the
Voronoi model, and later in [26] for the ordinary contact process. It tells us that if we increase the
‘good’ parameters then we can encode the contact process sufficiently well in terms of Bernoulli
variables. This is the topic of Section 5.1. We give a detailed proof of this part of the argu-
ment for Model A because it is considerably more complicated than the corresponding one in
[26, Lemma 3.2] for the ordinary contact process. (For Model B we give an outline.) The sub-
sequent parts of the proof appear in Section 5.2. Recall that we are only considering the planar
case d = 2.

We start by pointing out that the monotonicity lemma (Lemma 4.1) implies that Theorem 2.6
follows once we establish the following claim: Let κ, κ̃, λ, λ̃, h, h̃ > 0 be fixed, and consider
the parameterization {(κ, κ̃, rλ, r λ̃, rh, r h̃) : r ≥ 0} for Model A; and let κ, κ⋆, λ, h, h̃ > 0
be fixed, and consider the parameterization {(κ, κ⋆, rλ, rh, r h̃) : r ≥ 0} for Model B. Define
rp = inf{r ≥ 0 : ν(|C0| = ∞) > 0} as a function of the other parameters. Then the percolation
transition is sharp in r , in that if r < rp then ν(|C0| ≥ n) ≤ e−cn for some c > 0.

It is convenient to rescale time so that the total rate of ‘events per line’ is 1. That is, we assume

κ + κ̃ + 4λ+ 4λ̃+ h + h̃ = 1 (Model A),

κ + κ⋆ + 4λ+ h + h̃ = 1 (Model B).
(5.1)
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This clearly leaves the invariant measure ν unchanged. Write

q =


4λ+ 4λ̃+ h + h̃ (Model A),
4λ+ h + h̃ (Model B).

Thus q equals the part of the sum in (5.1) which is decreased in the sharpness theorems. We vary
the parameter q ∈ [0, 1] while keeping the sum (5.1) constant. We are then required to prove,
under the relevant assumptions, that if q is such that ν(|C0| ≥ n) goes to 0 as n→∞, but slower
than exponentially, then for any q ′′ > q,

ν(|C0| = ∞) > 0.

The objective of the stability coupling is the following. We wish to discretize time into inter-
vals of length δ = n−α (for a certain α > 0), and then apply the influence bound of Lemma 4.3.
However, even if we choose n very large, we cannot avoid that there are intervals with more
than one symbol. The solution is an intermediate step: for q ′ ∈ (q, q ′′) we couple the processes
for values q and q ′ in such a way that ‘essential’ symbols have distance at least δ. The exis-
tence of such a coupling is stated in Lemma 5.1. Subsequently, we use the influence bound of
Lemma 4.3 to conclude that when q ′ is further increased to q ′′, then the criterion for percolation
in Lemma 4.2 is satisfied.

5.1. Stability coupling

The processes with different values of q can be coupled in a natural way. Since this coupling
procedure serves as a ‘starting point’ for the more complicated coupling in Lemma 5.1, we give
a brief sketch here. Let Π be a Poisson point process with unit density on Z2

× R, and write
[Π ] for the support of Π (i.e. the set of points in a realization of this point process). We interpret
(x, t) ∈ [Π ] as a symbol in the graphical representation. In a second step we decide the type of
the symbol. Types are from the set

T =


D1, D2,U1,U2, A↑1 , A↓1 , A←1 , A→1 , A↑2 , A↓2 , A←2 , A→2


(Model A),

D1, D2,U1,U2, A↑1 , A↓1 , A←1 , A→1


(Model B),

corresponding to the notation in Section 4.1, arrow superscripts indicating the direction of
(incoming) arrows. From now on we refer to symbols with types D1 and D2 as down symbols
and the remaining as up symbols. For each symbol (x, t) ∈ [Π ], we consider three independent
random variables drawn uniformly from the unit interval, denoted Q(x,t), B(x,t), and G(x,t).
These are independent also of all other random variables used. We assign an up symbol whenever
Q(x,t) ≤ q and a down symbol whenever Q(x,t) > q . For Model A we assign type D1 if
Q(x,t) > q and B(x,t) ≤ κ/(κ + κ̃) and we assign type D2 if Q(x,t) > q and B(x,t) > κ/(κ + κ̃).
Similarly, whenever Q(x,t) ≤ q, we assign an up symbol based on the outcome of G(x,t), in such
a way that the marginal distributions for the ten different up symbols (four different arrows of
type A1, another four of type A2, and the two types U1 and U2) have the desired form. A very
similar construction holds for Model B (without the A2 symbols). We write Hq for the graphical
representation thus obtained. So Hq consists of the processes D1, D2, A1, A2,U1,U2 for Model
A, and D1, D2, A1,U1,U2 for Model B, as in Section 4.1. (Of course, Hq depends not only on q
but also on the remaining parameters κ, λ, κ̃, λ̃ etc; however, we suppress this from the notation.)
The reader may convince her-/himself that the marginal distributions coincide with the definition
of Section 4.1.
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We write P for the probability measure governing Π , Q(x,t), B(x,t) and G(x,t) as above, and
Pq for the probability measure governing the resulting graphical representation Hq . Thus P is a
coupling of all the Pq ’s, 0 ≤ q ≤ 1.

For each x ∈ Z2, q ∈ [0, 1] and n ∈ N, we define the random variable η(q,n)x as the state (0,
1 or −1) at (x, 0), subject to the boundary condition assigning state 1 to any point (y, s) with
d(x, y) = ⌊

√
n⌋ or s = −

√
n. (Here d(x, y) denotes the usual graph distance.) Note that η(q,n)x

is determined by the graphical representation in the space–time region

{(y, s) : d(x, y) ≤ ⌊
√

n⌋ and s ∈ [−
√

n, 0]}. (5.2)

More generally, for x ∈ Z2, q ∈ [0, 1] and (z, t) in the space–time region (5.2), we define
η
(x;q,n)
z (t) as the state at (z, t) subject to the same boundary condition as in the definition of
η
(q,n)
x above (i.e. the b.c. assigning state 1 to any point (y, s) with d(x, y) = ⌊

√
n⌋ or s = −

√
n).

Note that η(x;q,n)x (0) = η(q,n)x and that η(x;q,n)z (t) = 1 if d(x, z) = ⌊
√

n⌋ or t =
√

n.
Recall the length δ = n−α introduced in the paragraph preceding this section. For v ∈ Z2 and

k ∈ N, 0 ≤ k ≤ ⌈
√

n/δ⌉, and type τ ∈ T, we introduce the indicator functions

X (q,k,δ)τ (v) := 1

∃ symbol of type τ in {v} × (−kδ, (−k + 1)δ]


. (5.3)

For each δ-interval, these X variables only indicate whether there are symbols of a certain type in
the interval, but do not tell us their precise locations or order. However, this information is often
enough to conclude the value of η(x;q,n)z (t) defined above: We define η(x;q,n,δ)z (t) as the maximal
m ∈ {−1, 0, 1} for which the values of the elements of

X (q,k,δ)τ (v): τ ∈ T , v ∈ Z2, and k ∈ N


imply that η(x;q,n)z (t) ≥ m. (Because of the boundary condition in the definition of η(x;q,n)z (t)
we can, in fact, restrict to v’s with d(v, x) ≤

√
n and k’s with 0 ≤ k ≤ ⌈

√
n/δ⌉.) Clearly

η
(x;q,n,δ)
z (t) ≤ η(x;q,n)z (t) for all δ > 0. From now on we write η(q,n,δ)x for η(x;q,n,δ)x (0). (Note

that this is the maximal m ∈ {−1, 0, 1} for which the X (q,k,δ)τ (v)’s imply that η(q,n)x ≥ m.)
Let Ln be the box [n, 5n] × [n, 2n]. (The precise choice of this box is not essential.) The

following result holds for Model A as well as Model B (subject to the correct interpretation);
note that for Model A we do not require Assumption 2.2 for this result.

Lemma 5.1 (Stability Coupling). Let α > 0 and, for each n, let δ = δn = n−α . For any 0 < q <
q ′ < 1, there is a coupling P̃ = P̃q,q ′,n of Pq and Pq ′ such that P̃


∀x ∈ Ln : η

(q,n)
x ≤

η
(q ′,n,δ)
x


→ 1 as n→∞.

We give full details for Model A.

Proof for Model A. Let Rn denote the box [0, 6n] × [0, 3n]. Note that η(q,n)x and η(q
′,n,δ)

x , x ∈
Ln , are determined by the graphical representation in the space–time region

STn := Rn × [−⌈
√

n⌉, 0].

We let δ1 =
√
δ = n−α/2, and throughout the proof consider intervals I of the form {x} ×

[−(k + 1)δ1,−kδ1] whose intersection with STn is nonempty (k ∈ N0). We call such an interval
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I occupied whenever I ∩ [Π ] ≠ ∅. Moreover, we call two intervals I (x,k) and I (y,ℓ) neighbours
if either x = y and |k − ℓ| = 1, or d(x, y) = 1 and k = ℓ. This neighbourhood relation
determines the notion of clusters of neighbouring occupied intervals, henceforth called clusters.
We use the notation C for clusters, and define the size |C| to be the number of symbols in C
(not the number of intervals). More precisely, |C| =


I∈C |I ∩ [Π ]|, where |I ∩ [Π ]| is the

cardinality of I ∩ [Π ]. Note that the clusters depend only on the Poisson process Π , hence the
law of the clusters is independent of any of the parameters κ, κ̃, λ, λ̃, h, h̃, and the occupation of
the intervals is pairwise independent.

Let Sαn be the event that each occupied cluster in STn has size smaller than ⌈9/α⌉. It follows
in an elementary way from properties of the Poisson process (see [26, Eq. (18)]) that

lim
n→∞

P

Sαn


= 1. (5.4)

Before proceeding with the argument, here are the main ideas. Ideally, we would like to take
α so large that the size of the largest cluster shrinks to 1. However, later on (just before (5.13))
we need to take α rather close to 0; hence the existence of clusters of size ≥ 2 cannot be ruled
out, and a result of the form (5.4) is essentially the best bound we get. (The precise value 9/α
is not important.) We solve the issue by factorizing our probability space Ω = Ω1 × Ω2, where
Ω1 determines the clusters of intervals, the relative order (w.r.t. the time coordinates) of the
symbols within each cluster, as well as some other information, and Ω2 is responsible for the
‘fine-tuning’ (including the precise location of the symbols). We then first sample from Ω1, which
in particular fixes the clusters. For each cluster, when sampling from Ω2, we use a ‘crossover’,
which sacrifices an unnecessarily ‘good’ event in order to avoid a ‘bad’ event (where ‘bad’
means lack of δ-stability). ‘Crossover’ techniques have been used earlier for Voronoi percolation
in [4, Theorem 6.1], and for percolation in the (ordinary) contact process in [26]. However, it
turns out that the model we consider requires a considerably more subtle ‘crossover recipe’ than
in [26].

We now give a detailed description. Outcomes ω1 ∈ Ω1 contain the following partial
information about Π : First of all, for any interval I , ω1 determines the number of elements of
[Π ]∩ I . This identifies the clusters of STn . We call an interval I (x,k) = {x}×[−(k+1)δ1,−kδ1]

vertically isolated whenever I (x,k) contains precisely one symbol and both I (x,k−1) and I (x,k+1)

are not occupied. Further, for any cluster C, we let ω1 also determine the relative order of symbols
in C (w.r.t. the time coordinates of the symbols), and the value of G(x,t) for all symbols in C. (For
the ease of description we here name symbols by (x, t) although the precise time t is not yet
determined. Further, recall that G(x,t) tells which up type a symbol has if its type is up.) Finally,
we also let ω1 determine the value of B(x,t) for symbols in vertically isolated intervals only.

Outcomes ω2 ∈ Ω2 determine the precise location of symbols (x, t) ∈ Π , as well as the
value Q(x,t) for all (x, t) ∈ [Π ], and the value of B(x,t) for every (x, t) that is not contained in
a vertically isolated interval. Write F1 and F2 for the corresponding σ -algebras on Ω1 and Ω2
respectively.

Following the discussion at the beginning of the section, we can obtain the graphical repre-
sentation Hq

n of the process on the space–time box STn as function of ω1, ω2, and q:

Hq
n = Hq

n (ω1, ω2). (5.5)

(Actually, Hq
n depends also on the remaining parameters κ, λ, h etc. but we suppress this depen-

dence.) Since η(q,n)x is itself a monotone (in q) function of Hq
n , P gives a coupling of η(q,n)x and
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η
(q ′,n)
x such that η(q,n)x ≤ η

(q ′,n)
x for any q < q ′. The restriction of Hq

n to a cluster C is denoted
Hq

n,C = Hq
n,C(ω1, ω2).

The ‘crossover’ referred to above is a mapping Ω2 → Ω2 which depends on the outcome
of ω1 ∈ Ω1. To this end, fix an instance ω1 ∈ Ω1 (which, as mentioned above, particularly
fixes the clusters). Since P( · | F1) acts independently on the different clusters, we can write
P( · | F1) =


C PC( · | F1). Fix a cluster C and write Pω1

C ( ·) = PC( · | F1)(ω1). In light
of (5.4), we proceed under the assumption that |C| < ⌈9/α⌉. On the probability space Ω2 we
now define two events. (The definition of these events involves a cluster C and hence also ω1;
however, recall that we consider ω1 as fixed here.) The first event is

B: in Hq
n,C there are two symbols whose time coordinates differ by less than δ = n−α .

The probability of B is maximized when all |C| symbols are in one single interval, so that

Pω1
C (B) ≤ |C|2

2δ
δ1
≤ 2⌈9/α⌉2 n−α/2, if |C| < ⌈9/α⌉, (5.6)

which goes to 0 as n→∞.
Before we state the other event, we need the following notion: A maximal connected vertical

chain is a union of occupied δ1-intervals I (x,k), I (x,k+1), . . . , I (x,k+m−1), with k ≥ 0, m ≥ 1,
and where I (x,k+m) and (in case k ≥ 1) I (x,k−1) are vacant. We call m the length of the chain.
Note that a vertically isolated interval (defined earlier) is a maximal connected vertical chain of
length 1.

We now define the event G that:

(1) in Hq
n,C all symbols are down symbols (i.e., all symbols in C have Q-value larger than q),

(2) in Hq
n,C , each maximal connected vertical chain of length ≥ 2 has lowest symbol of type D1

and all other symbols of type D2, and

(3) in Hq ′

n,C all symbols are up symbols (i.e., all symbols in C have Q-value smaller than q ′).

From the above definitions it follows straightforwardly that

Pω1
C (G) ≥ (q ′ − q)|C|min{κ/(κ + κ̃), κ̃/(κ + κ̃)}

|C|
. (5.7)

By this and (5.6) we thus may choose n sufficiently large (not depending on C or otherwise
on ω1) such that

Pω1
C (G) ≥ Pω1

C (B) if |C| < ⌈9/α⌉. (5.8)

Write B′ = B \ G. From the above we get, for n sufficiently large, that if |C| < ⌈9/α⌉ then
there exist a measurable subset G′ ⊂ G\B and a measure-preserving 1–1 mapψC on Ω2 such that

• ψC(B′) = G′,
• ψC(G′) = B′, and
• ψC(ω2) = ω2 whenever ω2 ∉ B′ ∪ G′.

If, on the other hand, |C| ≥ ⌈9/α⌉, then we let ψC be the identity on Ω2.
The mapψC is the crossover mentioned before. SinceψC is measure-preserving on Ω2, we ob-

tain a new coupling of the graphical representations on the cluster C by considering the graphical
representation

H̃q ′

n,C := Hq ′

n,C(ω1, ψC(ω2)),
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cf. (5.5). The ‘overall coupling’ is then obtained by constructing H̃q ′

n,C for each cluster C inde-

pendently. The resulting graphical representation is denoted H̃q ′
n . We construct η(q,n)x from the

graphical representation Hq
n = Hq

n (ω1, ω2), and η(q
′,n,δ)

x from H̃q ′
n .

Finally, we check that this coupling has the desired properties. For a given ω1, let C be one of

the clusters. Recall that Hq ′

n,C ≥ Hq
n,C . We have to study H̃q ′

n,C and compare it with Hq
n,C . These

objects depend on ω2. There are three cases:

(i) Case ω2 ∉ (B∪G). This case is simple: by the definition of the coupling procedure, we have

ψC(ω2) = ω2, and H̃q ′

n,C = Hq ′

n,C , which (as we recalled above) dominates Hq
n,C . Moreover,

since ω2 ∉ B we know that Hq
n,C , and hence also H̃q ′

n,C , does not have two symbols of which
the time coordinates differ less than δ. This settles case (i).

(ii) Case ω2 ∈ B′. Then, by the definition of the coupling procedure, ψC(ω2) ∈ G′ ⊆ G \ B. By

the definition of G, this implies that all symbols in H̃q ′

n,C are up symbols. Since the precise

type of an up symbol is determined by ω1, we get that each symbol in H̃q ′

n,C ‘dominates’ the

corresponding symbol in Hq
n,C . Moreover, since ψC(ω2) is not in B, there are no symbols in

H̃q ′

n,C of which the time coordinates differ less than δ. Finally, the order (w.r.t. time) of the

symbols in H̃q ′

n,C is the same as for Hq
n,C (recall that the order is determined by ω1). This

settles case (ii).
(iii) Case ω2 ∈ G. Then, by the definition of G, the types in Hq

n,C on the maximal connected ver-
tical chains that are not single vertically isolated intervals, are as ‘unfavourable’ as possible:
Consider such a chain and let I (z,k) be its ‘highest’ (i.e., with largest time index) interval.
Since the symbol with smallest time coordinate on the chain has type D1 and the others D2,
and since there are no incoming arrows, it follows that, for all vertices x for whose state at
time 0 this part of space–time is ‘relevant’ (i.e. for all x ∈ Ln with d(x, v) ≤

√
n),

η
(x;q,n)
z (−kδ) = −1.

Further, each single vertically isolated interval has (by the definition of G) in Hq
n,C a ‘down’

symbol. Since the precise type of this down symbol is determined by ω1, it follows that the

corresponding symbol in H̃q ′

n,C is either the same type of down symbol, or an up symbol.

From these considerations it follows that, no matter how the symbols in H̃q ′

n,C are located
precisely, we have that, if C would be the only cluster, then each space–time point (z, t)
which is the ‘highest point’ of a maximal connected vertical chain of C, satisfies

η
(x;q ′,n,δ)
z (t) ≥ η(x;q,n)z (t) for all x ∈ Ln with d(x, v) ≤

√
n. (5.9)

This settles the last case.

At the end of case (iii) we stated that (5.9) would hold if C is the only cluster. In fact, by
combining this statement with the conclusions concerning case (i) and (ii), and the monotonicity
of the contact process dynamics, it follows that (5.9) also holds (for such (z, t)) if there are other
clusters (as long as all clusters have size ≤ 9/α). This completes the proof of Lemma 5.1 for
Model A. �

Sketch proof for Model B. The argument for Model B has the same structure, but the details are
considerably simpler. One difference is that now the only information represented by ω1 is the
number of symbols in each interval (which in turn defines the clusters) and the values of U(x,t).
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All other information (the precise locations of the symbols and the Q(x,t)- and B(x,t)-values)
are represented by ω2. Another difference is that we modify the definition of the event G to the
following:

(1) in Hq
n,C all symbols are of type D2;

(2) in Hq ′

n,C all symbols are up symbols.

This implies Q(x,t) ∈ (q, q ′) for all symbols in Hq
n,C . In particular, no special ‘treatment’ of

maximal connected vertical chains is needed anymore. Eq. (5.7) becomes

Pω1
C (G) ≥ (q ′ − q)|C|κ/(κ + κ⋆)|C|

,

so that (5.8) still holds for large enough n. Thus we may define crossover maps ψC and the
modified graphical representation H̃q

n as before. To check that this coupling has the required
properties, we distinguish again the three cases (i)–(iii) as for the 3-state model. Indeed, the ar-
guments for cases (i) and (ii) apply verbatim as in the 3-state case. Case (iii) is now considerably

simpler than before, because ω2 ∈ G implies that Hq
n,C has only D2 symbols and hence H̃q ′

n,C is
always ‘at least as good’. �

5.2. Proof of Theorem 2.6

Let νq denote the upper invariant measure for the contact process defined as above with pa-
rameter value q . Let 0 < q1 < 1 be such that under νq1 the cluster size |C0| does not have
exponential tails. Let q2 > q1. We will deduce that νq2(|C0| = ∞) > 0. This immediately
implies Theorem 2.6.

By the first part of Lemmas 4.2 and 4.4 we have that there exist ε1 > 0 and a sequence
ni →∞ such that

νq1(H(4ni , ni )) ≥ ε1 for all i ≥ 1.

Recall that Ln denotes the 4n-by-n rectangle [n, 5n] × [n, 2n], and write Hi = H(Lni ). Recall
the definition of η(q,n) from the paragraphs preceding and below (5.3). By monotonicity (cf.
Lemma 4.1 and the discussion around there) the realization of νq on Ln is dominated by η(q,n)

for all n ≥ 1. We deduce that

P(η(q1,ni ) ∈ Hi ) ≥ ε1 for all i ≥ 1. (5.10)

Fix q ′ ∈ (q1, q2). By Lemma 5.1 and (5.10),

P(η(q
′,ni ,δ) ∈ Hi ) ≥ ε2 := ε1/2

for all large enough i ≥ 1. The latter probability is defined in terms of the Bernoulli variables
X of (5.3), so in principle Lemma 4.3 could now be applied. However, we have no good way of
bounding the number N of variables with maximal influence. To get around this, we consider a
‘symmetrized’ version of the event Hi . A similar method was used in e.g. [4,26] and is standard
in this type of argument; here we use the ‘truncation’ implicit in the definition of the η(q,n,δ) and
hence, ultimately, the fast convergence of the dynamics (Lemma 2.1 and Assumption 2.2).

Recall that Rn is the box [0, 6n] × [0, 3n], and consider the ‘periodic’ set Rper
n obtained from

Rn by identifying the left and right sides; that is, identifying points (6n, y) and (0, y). We can
consider Ln as a subset of Rper

n rather than Z2. Since the variables η(q
′,ni ,δ) are ‘truncated’ at

distance
√

ni the probability that η(q
′,ni ,δ) ∈ Hi is (for large enough i) unchanged under this



J. van den Berg et al. / Stochastic Processes and their Applications 125 (2015) 513–537 533

change of geometry. Let Ai be the event that there is a horizontal crossing of 1’s of at least one
of the 6ni − 1 horizontal translates of Lni in Rper

ni . Thus

πi (q
′) := P(η(q

′,ni ,δ) ∈ Ai ) ≥ P(η(q
′,ni ,δ) ∈ Hi ) ≥ ε2, (5.11)

for all sufficiently large i .
We apply Lemma 4.3 to the event Ai . By symmetry, all 6ni − 1 horizontal translates of

X (q
′,k,δ)

τ (v) have the same influence, so the number N of Lemma 4.3 satisfies N ≥ 6ni −1 ≥ ni .
The number m of that lemma corresponds to the number of different types τ where we do not
distinguish between different directions of arrows (because the Poisson intensities do not depend
on these directions). Thus m = 6 for Model A, and m = 5 for Model B. (The number n of
variables of each type which appears in that lemma does not figure in the conclusion, so it is
irrelevant for us.)

For the next step of the argument, we consider the two models separately. Consider Model A

first. We let p1, . . . , p6 denote the probabilities that X (q
′,k,δ)

τ (v) equals 1 for τ = U1, τ = U2,
τ ∈ A2, τ ∈ A1, τ = D1, and τ = D2, respectively. Recall that κ + κ̃ + 4λ + 4λ̃ + h̃ + h̃ = 1
and that we increase q = 4λ + 4λ̃ + h + h̃ while keeping κ/κ̃ and the ratios between any two
of λ̃, λ, h̃, h fixed. This implies that there are constants r1, . . . , r6 ∈ (0, 1) such that h = r1q,
h̃ = r2q, λ = r3q, λ̃ = r4q , κ = r5(1− q), and κ̃ = r6(1− q). Hence p j equals 1− e−r j qδ for
1 ≤ j ≤ 4, and 1− e−r j (1−q)δ for j = 5, 6. It follows that for i large enough

dπi

dq
=

4
j=1

δr j e
−r j δq ∂πi

∂p j
−

6
j=5

δr j e
−r j δ(1−q) ∂πi

∂p j

≥ δC
 4

j=1

∂πi

∂p j
−

6
j=5

∂πi

∂p j


≥ δC log N

πi (1− πi )

K ′δ log(2/δ)
, (5.12)

for some constants C, K ′, and where the last inequality comes from Lemma 4.3.
Let ε3 > 0 and suppose that πi (q ′′) < 1 − ε3 for all q ′′ ∈ (q ′, q2). Using that N ≥ ni

and δ = n−αi we deduce from (5.11) and (5.12) that πi (q2) ≥ C(q2 − q ′)ε2ε3/α. Choosing α
sufficiently small we reach the following conclusion:

∀ε∗ > 0 ∃α > 0: for large enough i, πi (q2) ≥ 1− ε∗. (5.13)

For Model B, we obtain (5.13) in literally the same way, except that λ̃ = r4 = p4 = 0 (because
there are no A2 symbols) and κ̃ = κ⋆.

This final argument is the same for both models. Note that the event Ai implies that there is a
horizontal crossing of at least one of the following rectangles (regarded as subsets of Rper

n ):

[ jni , ( j + 3)ni (mod 6ni )] × [ni , 2ni ] 0 ≤ j ≤ 5.

Thus (by using the FKG-inequality) for ε̂ > 0 as in Lemma 4.2,

P(η(q2,ni ,δ) ∈ H(3ni , ni )) ≥ 1− (1− P(η(q2,ni ,δ) ∈ Ai ))
1/6
≥ 1− ε̂/2

for all sufficiently large i , where the last inequality comes from (5.13). The family of random
variables (η(q2,ni ,δ)

x : x ∈ [n, 4n] × [n, 2n]) is clearly stochastically dominated by the family
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(η
(q2,ni )
x : x ∈ [n, 4n] × [n, 2n]), and the law of this latter family has (by Lemma 2.1 and

Assumption 2.2, and using standard arguments) total variation distance at most

C ′1 · 3n2
i exp


−C ′2
√

ni


from νq2 . Hence νq2(H(3ni , ni )) ≥ 1− ε̂ for large enough i , which by Lemma 4.2 implies that
νq2(|C0| = ∞) > 0. This completes the proof of Theorem 2.6. �

5.3. Proof of Corollary 2.7

Recall that for x, y ∈ Rk we write x ≺ y if each coordinate of x is strictly smaller than the
corresponding coordinate of y. We write R+ = (0,∞). When proving Corollary 2.7 we make
use of the following fact.

Lemma 5.2. Let n ≥ 1 be fixed and let B ⊆ R3
+ be a measurable set with the following property:

if a1, a2, . . . , am ∈ B satisfy a1 ≺ a2 ≺ · · · ≺ am then m ≤ n. (5.14)

For y ∈ R2
+ write B(y) = (R+ × {y})∩ B and let Γ denote the set of y ∈ R2

+ such that B(y) is
uncountable. Then Γ has measure zero.

Proof. The partially ordered set (B,≺) has height at most n, so by (the dual version of) Dil-
worth’s theorem, B can be partitioned into n antichains. An antichain in this situation is a set
satisfying (5.14) with n = 1, so it suffices to consider that case.

For n = 1, note that if x < x ′ and both (x, y) and (x ′, y) belong to B then property (5.14) is
preserved if the interval [x, x ′]×{y} is added to B. Thus we may assume that B is maximal in the
sense that it includes all such intervals. With each y ∈ Γ we may thus associate a rational number
q(y) such that (q(y), y) lies in an interval of B(y). We now write y ∈ R2

+ in polar coordinates
(θ, r) with θ ∈ (0, π/2) and r > 0. Fix θ and r < r ′ and write y = (θ, r) and y′ = (θ, r ′). If
(x, y) ∈ B(y) and (x ′, y′) ∈ B(y′) then x ′ ≤ x , by (5.14) with n = 1. Thus, if y, y′ ∈ Γ then
we may choose q(y′) < q(y). It follows that for each θ ∈ (0, π/2) the set of r > 0 such that
(θ, r) ∈ Γ is at most countable. By Fubini’s theorem (using polar coordinates) it follows that Γ
has measure zero. �

Proof of Corollary 2.7 for Model A. Fix arbitrary κ, κ̃ > 0. Recall that hp is decreasing in each
of the parameters λ, λ̃, h̃. Since hp(λ, λ̃, h̃) <∞ for h̃ > 0 we may restrict (λ, λ̃, h̃) to one of the
(countably many) sets where hp is bounded above by a fixed integer K . We call a triple (λ, λ̃, h̃)
‘bad’ if there is some δ > 0 such that

hp(λ
′, λ̃′, h̃′) ≤ hp(λ, λ̃, h̃)− δ for all (λ′, λ̃′, h̃′) ≻ (λ, λ̃, h̃). (5.15)

If B denotes the set of ‘bad’ points, then we may write B = ∪n≥1 Bn , where Bn is the set
of points such that (5.15) holds with δ = K/n. The set Bn satisfies (5.14), so it follows from
Lemma 5.2 that for almost all pairs (λ̃, h̃) the set of λ > 0 such that (λ, λ̃, h̃) is bad is countable.

We are therefore done if we show that if (λ, λ̃, h̃) is not bad, and h < hp(λ, λ̃, h̃), then
the cluster size decays exponentially for the parameter values κ, κ̃, λ, λ̃, h, h̃. Writing δ =
hp(λ, λ̃, h̃)− h we have that there exists (λ′, λ̃′, h̃′) ≻ (λ, λ̃, h̃) such that

hp(λ
′, λ̃′, h̃′) > hp(λ, λ̃, h̃)− δ = h.

The result now follows from Theorem 2.6. �
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Proof of Corollary 2.7 for Model B. Fix κ, κ⋆ > 0. The argument for Model B is very similar
to the one already given for Model A, using the analog of Lemma 5.2 with B ⊆ R2

+ (in which
case we can actually show that Γ is at most countable). One small difference is that we may now
have hp = ∞ for some (λ, h̃). We now say that (λ, h̃) is bad if hp(λ, h̃) < ∞ and there exists
δ > 0 such that

hp(λ
′, h̃′) ≤ hp(λ, h̃)− δ for all (λ′, h̃′) ≻ (λ, h̃), (5.16)

and that (λ, h̃) is terrible if hp(λ, h̃) = ∞ but hp(λ, h̃) <∞ for all (λ′, h̃′) ≻ (λ, h̃). The set B
of bad points may be written as

B =

K≥1


n≥1

B(K )n ,

where B(K )n is the set of points (λ, h̃) such that hp(λ, h̃) ≤ K and (5.16) holds with δ = K/n.

Thus B(K )n satisfies (5.14). The set T of terrible points satisfies (5.14) with n = 1. It follows that
for almost all h̃ > 0, the set of λ such that (λ, h̃) ∈ B ∪ T is at most countable. If (λ, h̃) ∉ B ∪ T
then the result follows in the same way as for Model A. �

6. Existence of density-driven processes

In this section we prove the existence of DDCP (Definition 1.1) using a fixed-point argument.
Although this result is strictly speaking not needed for our main results on sharpness and lack
of robustness (since, as discussed in Section 3.1, stationary DDCP are simply contact processes
with constant parameters), we find it interesting in itself.

We consider 3-state processes with constant κ, κ̃, λ̃, h̃. Recall that we write ρ(t) = P(X0(t) =
1) for the density of the process. We let L∞b denote the set of measurable h: [0,∞) → [0,∞)
which are bounded on each compact subinterval.

We prove the following existence result for Model A; a completely analogous result holds for
Model B.

Theorem 6.1. Let Λ, H : [0, 1] → [0,∞) be uniformly Lipschitz continuous. For all κ, κ̃, λ̃, h̃ ≥
0 and each translation-invariant probability measure ν on {−1, 0, 1}Z

d
, there is a unique pair

(λ, h) ∈ L∞b × L∞b such that the 3-state contact process (Model A) with initial distribution ν
and parameters κ, κ̃, λ(·), λ̃, h(·), h̃ satisfies λ(t) = Λ(ρ(t)) and h(t) = H(ρ(t)) for all t ≥ 0.

Proof. Let h, h′, λ, λ′ ∈ L∞([0,∞), [0,∞)), and let D1, D2, U2 and A2 be as in Sec-
tion 4.1. The intensities of these processes are kept fixed. Let U 1 be a Poisson process of

intensity h(t) ∧ h′(t). Let Ũ (h)
1 and Ũ (h′)

1 denote independent Poisson processes (independent
also of U 1) with intensities h(t) − (h(t) ∧ h′(t)) and h′(t) − (h(t) ∧ h′(t)), respectively. Write

U (h)
1 = U 1 ∪ Ũ (h)

1 , U (h′)
1 = U 1 ∪ Ũ (h′)

1 and U 1 = U 1 ∪ Ũ (h)
1 ∪ Ũ (h′)

1 . In the same way (and

independently of the Poisson processes above) we define A1, A(λ)1 , A(λ
′)

1 and A1. Furthermore,

let m := 1 ∨ sup{λ(t) ∨ λ′(t) : t ≥ 0}, and let A(m)1 be obtained from A1 by appending another

independent Poisson process of intensity m − (λ(t) ∨ λ′(t)). Note that an element of A(m)1 (at
time coordinate t) belongs to A1 \ A1 with probability |λ′(t)− λ(t)|/m ≤ ∥λ′ − λ∥∞.

Let X be the contact process with 0 → 1 transitions given by U 1 and A1 (and remaining
transitions given by D1, D2, U2, A2). Similarly, X (h,λ), X (h

′,λ′), and X denote the contact pro-
cesses with 0 → 1 transitions given by U (h)

1 and A(λ)1 , with U (h′)
1 and A(λ

′)
1 , and with U 1 and
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A1, respectively. The construction above is done such that X ≤ X (h,λ), X (h
′,λ′)
≤ X holds and

U 1 \U 1 has rate |h(t)− h′(t)|.
Now consider, for each t ≥ 0, the set Z←t , which is defined as the set of space–time points

(x, s), 0 ≤ s ≤ t , such that there is a space–time path from (x, s) to (0, t) using arrows from
A(m)1 ∪A2. Further, let |Z←t | be the sum of the total Lebesgue measure of all intervals constituting
Z←t , plus the number of arrows in the space–time paths in the definition of Z←t .

Let Bt be the event that none of the arrows in the space–time paths in the definition of Z←t
belongs to A1 \ A1. If Bt occurs and (U 1 \ U 1) ∩ Z←t = ∅, then X0(t) = X0(t) and hence

X (h,λ)0 (t) = X (h
′,λ′)

0 (t).
Equip L∞([0,∞), [0,∞))2 with the norm ∥(λ, h)∥ = ∥λ∥∞+∥h∥∞, and consider the map-

ping R from this space to L∞([0,∞), [0, 1]) given by letting R(λ, h)(t) = P(X0(t) = 1) where
X is the 3-state contact process with rates κ, κ̃, λ(·), λ̃, h(·), h̃. Let α > 0. By the above we have,
for all 0 ≤ t ≤ α,

|R(λ, h)(t)− R(λ′, h′)(t)| ≤ P(Bc
t occurs or (U 1 \U 1) ∩ Z←t ≠ ∅)

≤ E |Z←t |(∥λ− λ
′
∥∞ + ∥h − h′∥∞),

which by obvious monotonicity is at most

E |Z←α |(∥λ− λ
′
∥∞ + ∥h − h′∥∞).

Let K1, K2 be uniform Lipschitz constants for Λ, H . It follows that

sup
0≤t≤α

|Λ(R(λ, h)(t))− Λ(R(λ′, h′)(t))| + sup
0≤t≤α

|H(R(λ, h)(t))− H(R(λ′, h′)(t))|

≤ (K1 + K2) E |Z←α | (∥λ− λ
′
∥∞ + ∥h − h′∥∞).

By standard comparison with a branching process, it is easy to see that E |Z←α | is finite for
α sufficiently small, and goes to 0 as α → 0. Hence there is an α0 > 0 such that the mapping
Γ = Γ ν

α0
: (λ, h) → (Λ(R(λ, h)), H(R(λ, h))) is a contraction of L∞([0, α0], [0,∞))2. By Ba-

nach’s fixed point theorem, this gives the desired result for the time interval [0, α0]. By repeating
(‘concatenating’) this result, it can be extended to [0, 2α0], [0, 3α0], etc., which completes the
proof. �
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