672 research outputs found

    Hydrogen-Helium Mixtures at High Pressure

    Full text link
    The properties of hydrogen-helium mixtures at high pressure are crucial to address important questions about the interior of Giant planets e.g. whether Jupiter has a rocky core and did it emerge via core accretion? Using path integral Monte Carlo simulations, we study the properties of these mixtures as a function of temperature, density and composition. The equation of state is calculated and compared to chemical models. We probe the accuracy of the ideal mixing approximation commonly used in such models. Finally, we discuss the structure of the liquid in terms of pair correlation functions.Comment: Proceedings article of the 5th Conference on Cryocrystals and Quantum Crystals in Wroclaw, Poland, submitted to J. Low. Temp. Phys. (2004

    The Atlantic Water boundary current in the Chukchi Borderland and Southern Canada Basin

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016197, doi:10.1029/2020JC016197.Synoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores and T/S signatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.This work was funded by the following sources: National Science Foundation Grants PLR‐1504333, OPP‐1733564, and OPP‐1504394; National Oceanic and Atmospheric Administration Grant NA14OAR4320158; and National Aeronautics and Space Administration Grant NNX10AF42G.2021-01-2

    Significant biologically mediated CO2 uptake in the pacific arctic during the late open water season.

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019):821-843, doi:10.1029/2018JC014568.Shifting baselines in the Arctic atmosphere‐sea ice‐ocean system have significant potential to alter biogeochemical cycling and ecosystem dynamics. In particular, the impact of increased open water duration on lower trophic level productivity and biological CO2 sequestration is poorly understood. Using high‐resolution observations of surface seawater dissolved O2/Ar and pCO2 collected in the Pacific Arctic in October 2011 and 2012, we evaluate spatial variability in biological metabolic status (autotrophy vs heterotrophy) as constrained by O2/Ar saturation (∆O2/Ar) as well as the relationship between net biological production and the sea‐air gradient of pCO2 (∆pCO2). We find a robust relationship between ∆pCO2 and ∆O2/Ar (correlation coefficient of −0.74 and −0.61 for 2011 and 2012, respectively), which suggests that biological production in the late open water season is an important determinant of the air‐sea CO2 gradient at a timeframe of maximal ocean uptake for CO2 in this region. Patchiness in biological production as indicated by ∆O2/Ar suggests spatially variable nutrient supply mechanisms supporting late season growth amidst a generally strongly stratified and nutrient‐limited condition.We thank the Captain, crew, and marine technicians of the USCGC Healy for their shipboard support. We also thank anonymous reviewers for providing useful feedback that improved this manuscript. This work was supported by NSF awards 1232856 and 1504394 to L.W.J. T.T. was supported by a grant NA150AR4320064 from Climate Program Office/NOAA and R.P. by NSF PLR‐1504333 and OPP‐1702371. All O2 and O2/Ar data and metadata are available at Arcticdata.io, doi:10.18739/A21G22, and pCO2 data are available at www.ldeo.columbia.edu/CO2 as well as from the NOAA National Centers for Environmental Information Ocean Carbon Data System at https://www.nodc.noaa.gov/ocads/.2019-07-1

    Autologous Cellular Therapy for Cerebral Palsy: A Randomized, Crossover Trial

    Get PDF
    We examined an autologous mononuclear-cell-therapy-based approach to treat cerebral palsy using autologous umbilical cord blood or bone-marrow-derived mononuclear cells. The primary objective was to determine if autologous cells are safe to administer in children with cerebral palsy. The secondary objectives were to determine if there was improvement in motor function of patients 12 months after infusion using the Gross Motor Function Measure and to evaluate impact of treatment on corticospinal tract microstructure as determined by radial diffusivity measurement. This Phase 1/2a trial was a randomized, blinded, placebo-controlled, crossover study in children aged 2–10 years of age with cerebral palsy enrolled between November 2013 and November 2016. Participants were randomized to 2:1 treatment:placebo. Treatment was either autologous bone-marrow-derived mononuclear cells or autologous umbilical cord blood. All participants who enrolled and completed their baseline visit planned to return for follow-up visits at 6 months, 12 months and 24 months after the baseline visit. At the 12-month post-treatment visit, participants who originally received the placebo received either bone-marrow-derived mononuclear cell or umbilical cord blood treatment. Twenty participants were included; 7 initially randomized to placebo, and 13 randomized to treatment. Five participants randomized to placebo received bone-marrow-derived mononuclear cells, and 2 received umbilical cord blood at the 12-month visit. None of the participants experienced adverse events related to the stem cell infusion. Cell infusion at the doses used in our study did not dramatically alter motor function. We observed concordant bilateral changes in radial diffusivity in 10 of 15 cases where each corticospinal tract could be reconstructed in each hemisphere. In 60% of these cases (6/10), concordant decreases in bilateral corticospinal tract radial diffusivity occurred post-treatment. In addition, 100% of unilateral corticospinal tract cases (3/3) exhibited decreased corticospinal tract radial diffusivity post-treatment. In our discordant cases (n = 5), directionality of changes in corticospinal tract radial diffusivity appeared to coincide with handedness. There was a significant improvement in corticospinal tract radial diffusivity that appears related to handedness. Connectivity strength increased in either or both pathways (corticio-striatal and thalamo-cortical) in each participant at 12 months post-treatment. These data suggest that both stem cell infusions are safe. There may be an improvement in myelination in some groups of patients that correlate with small improvements in the Gross Motor Function Measure scales. A larger autologous cord blood trial is impractical at current rates of blood banking. Either increased private banking or matched units would be required to perform a larger-scale trial

    Costs of Illness in the 1993 Waterborne Cryptosporidium Outbreak, Milwaukee, Wisconsin

    Get PDF
    To assess the total medical costs and productivity losses associated with the 1993 waterborne outbreak of cryptosporidiosis in Milwaukee, Wisconsin, including the average cost per person with mild, moderate, and severe illness, we conducted a retrospective cost-of-illness analysis using data from 11 hospitals in the greater Milwaukee area and epidemiologic data collected during the outbreak. The total cost of outbreak-associated illness was 96.2million:96.2 million: 31.7 million in medical costs and 64.6millioninproductivitylosses.Theaveragetotalcostsforpersonswithmild,moderate,andsevereillnesswere64.6 million in productivity losses. The average total costs for persons with mild, moderate, and severe illness were 116, 475,and475, and 7,808, respectively. The potentially high cost of waterborne disease outbreaks should be considered in economic decisions regarding the safety of public drinking water supplies

    The Pathway to Detangle a Scrambled Gene

    Get PDF
    Programmed DNA elimination and reorganization frequently occur during cellular differentiation. Development of the somatic macronucleus in some ciliates presents an extreme case, involving excision of internal eliminated sequences (IESs) that interrupt coding DNA segments (macronuclear destined sequences, MDSs), as well as removal of transposon-like elements and extensive genome fragmentation, leading to 98% genome reduction in Stylonychia lemnae. Approximately 20-30% of the genes are estimated to be scrambled in the germline micronucleus, with coding segment order permuted and present in either orientation on micronuclear chromosomes. Massive genome rearrangements are therefore critical for development.To understand the process of DNA deletion and reorganization during macronuclear development, we examined the population of DNA molecules during assembly of different scrambled genes in two related organisms in a developmental time-course by PCR. The data suggest that removal of conventional IESs usually occurs first, accompanied by a surprising level of error at this step. The complex events of inversion and translocation seem to occur after repair and excision of all conventional IESs and via multiple pathways.This study reveals a temporal order of DNA rearrangements during the processing of a scrambled gene, with simpler events usually preceding more complex ones. The surprising observation of a hidden layer of errors, absent from the mature macronucleus but present during development, also underscores the need for repair or screening of incorrectly-assembled DNA molecules

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at √s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|<2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions
    • 

    corecore