19 research outputs found

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia:design, results and future prospects

    Get PDF

    eReflections – Ten years of educational technology studies at the University of Oulu:essays contributed by the network builders

    No full text
    Abstract This electronic publication focuses on the development of educational technology studies in the University of Oulu. The publication addresses contemporary essays contributed by the network builders, the people who were in key position when developing both the curriculum and the research unit for educational technology. The articles cover a wide range of the unit's research area. The articles deal with technological, pedagogical as well as organizational and managerial topics

    The effects of different combinations of fixed and moving bed bioreactors on rainbow trout (Oncorhynchus mykiss) growth and health, water quality and nitrification in recirculating aquaculture systems

    No full text
    The effect of bioreactor design on nitrification efficiency has been well studied, but less is known about the overall impacts on water quality. Besides nitrification, submerged fixed bed bioreactors (FBBR) trap fine solid particles, whereas moving bed bioreactors (MBBR) grind solids, possibly increasing solids and particle accumulation in the system. In this experiment, the effects of different combinations of fixed bed and moving bed bioreactors on water quality, solids removal, particle size distribution, fish health based on histopathological changes and nitrification efficiency were studied in laboratory scale recirculating aquaculture systems (RAS) with rainbow trout (Oncorhynchus mykiss). Three set-ups with triplicate tanks were used: 1. two consecutive fixed bed bioreactors (FF); 2. a fixed bed bioreactor followed by a moving bed bioreactor (FM) and 3. two consecutive moving bed bioreactors (MM). Fish performance was not influenced by the design of the bioreactor, specific growth rate (SGR) being between 1.59 and 1.64% d−1 and feed conversion ratio (FCR) between 0.95 and 0.98. Water nitrite concentration was higher in the FF systems compared to FM and MM systems, whereas the average total ammonia nitrogen concentration (TAN) was not influenced by the treatments. Nitrification rate, which was measured in the laboratory, followed the water nitrite levels, indicating highest total ammonium oxidation rates in the MM systems. UV254 absorbance and total organic carbon (TOC) concentrations were higher in the groups with moving bed systems, indicating accumulation of organic substances in the circulating water. The total volume of particles was higher in the MM systems as compared to the FF systems. The total solids balance was similar in all the bioreactor groups, since the removal of solids by the FBBR backwash was compensated by the drum filter in the FM and MM systems. In general, no significant histopathological difference in gill, kidney, heart and liver tissue were observed between the RAS treatment groups and the flow-through treatment.peerReviewe

    Synthesis and Biological Evaluation of Second-Generation Tropanol-Based Androgen Receptor Modulators

    No full text
    To circumvent antiandrogen resistance in prostate cancer, antiandrogens effective for both the androgen receptor (AR) and AR mutants are required. The AR antagonists in this study originate from previous findings, which showed that subtle differences in substitution pattern lead to a conformational change that alters the ligand activity, rendering an agonist to an antagonist. We have identified small yet potent tropanol-based ligands possessing significant antiandrogenic activity with both wild-type AR and the two most common AR ligand binding domain (LBD) mutants
    corecore