804 research outputs found

    An inhomogeneous Weibull–Hawkes process to model underdispersed acoustic cues

    Get PDF
    TAM time covered by ACCURATE, funded by the US Navy Living Marine Resources program (contract no. N3943019C2176). TAM thanks partial support by CEAUL (funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal, through the project UIDB/00006/2020). This work was supported by Marsden Fund proposal UOA 3723517 and Asian Office of Aerospace Research & Development grant FA2386-21-1-4028.A Hawkes point process describes self-exciting behaviour where event arrivals are triggered by historic events. These models are increasingly becoming a popular choice in analysing event-type data. Like all other inhomogeneous Poisson point processes, the waiting time between events in a Hawkes process is derived from an exponential distribution with mean one. However, as with many ecological and environmental data, this is an unrealistic assumption. We, therefore, extend and generalise the Hawkes process to account for potential under- or overdispersion in the waiting times between events by assuming the Weibull distribution as the foundation of the waiting times. We apply this model to the acoustic cue production times of sperm whales and show that our Weibull–Hawkes model better captures the inherent underdispersion in the interarrival times of echolocation clicks emitted by these whales.Peer reviewe

    Identifying prognostic structural features in tissue sections of colon cancer patients using point pattern analysis

    Get PDF
    Diagnosis and prognosis of cancer is informed by the architecture inherent in cancer patient tissue sections. This architecture is typically identified by pathologists, yet advances in computational image analysis facilitate quantitative assessment of this structure. In this article we develop a spatial point process approach in order to describe patterns in cell distribution within tissue samples taken from colorectal cancer (CRC) patients. In particular, our approach is centered on the Palm intensity function. This leads to taking an approximate-likelihood technique in fitting point processes models. We consider two Neyman-Scott point processes and a void process, fitting these point process models to the CRC patient data. We find that the parameter estimates of these models may be used to quantify the spatial arrangement of cells. Importantly, we observe characteristic differences in the spatial arrangement of cells between patients who died from CRC and those alive at follow-up

    A spatiotemporal multispecies model of a semicontinuous response

    Get PDF
    BS was part funded by Engineering and Physical Sciences Research Council–Natural Environment Research Council grant EP/10009171/1.As accessible and potentially vulnerable species high up in the food chain, birds are often used as indicator species to highlight changes in ecosystems. This study focuses on multiple spatially dependent relationships between a raptor (sparrowhawk), a potential prey species (house sparrow) and a sympatric species (collared doves) in space and time. We construct a complex spatiotemporal latent Gaussian model to incorporate both predator–prey and sympatric relationships, which is novel in two ways. First, different types of species interactions are represented by a shared spatiotemporal random effect, which extends existing approaches to multivariate spatial modelling through the use of a joint latent modelling approach. Second, we use a delta–gamma model to capture the semicontinuous nature of the data to model the binary and continuous sections of the response jointly. The results indicate that sparrowhawks have a localized effect on the presence of house sparrows, which could indicate that house sparrows avoid sites where sparrowhawks are present.PostprintPeer reviewe

    A Bayesian approach to modelling subnational spatial dynamics of worldwide non-state terrorism, 2010-2016

    Get PDF
    Terrorism persists as a worldwide threat, as exemplified by the on‐going lethal attacks perpetrated by Islamic State in Iraq and Syria, Al Qaeda in Yemen and Boko Haram in Nigeria. In response, states deploy various counterterrorism policies, the costs of which could be reduced through efficient preventive measures. Statistical models that can account for complex spatiotemporal dependences have not yet been applied, despite their potential for providing guidance to explain and prevent terrorism. To address this shortcoming, we employ hierarchical models in a Bayesian context, where the spatial random field is represented by a stochastic partial differential equation. Our main findings suggest that lethal terrorist attacks tend to generate more deaths in ethnically polarized areas and in locations within democratic countries. Furthermore, the number of lethal attacks increases close to large cities and in locations with higher levels of population density and human activity.PostprintPeer reviewe

    Using individual-based bioenergetic models to predict the aggregate effects of disturbance on populations : a case study with beaked whales and Navy sonar

    Get PDF
    Funding: This research was supported by the Office of Naval Research (https://www.onr.navy.mil/) grant N0001419WX00431 and N000142012045: “Integrating information on displacement caused by mid-frequency active sonar and measurements of prey field into a population consequences of disturbance model for beaked whales” awarded to Dave Moretti, ND, SW, JH, LT, KB-B, AdR & VH. Funding support for tagging was provided by the US Navy's Office of Naval Research and Living Marine Resources program, the Chief of Naval Operations' Energy and Environmental Readiness Division and the NOAA Fisheries Ocean Acoustics Program.Anthropogenic activities can lead to changes in animal behavior. Predicting population consequences of these behavioral changes requires integrating short-term individual responses into models that forecast population dynamics across multiple generations. This is especially challenging for long-lived animals, because of the different time scales involved. Beaked whales are a group of deep-diving odontocete whales that respond behaviorally when exposed to military mid-frequency active sonar (MFAS), but the effect of these nonlethal responses on beaked whale populations is unknown. Population consequences of aggregate exposure to MFAS was assessed for two beaked whale populations that are regularly present on U.S. Navy training ranges where MFAS is frequently used. Our approach integrates a wide range of data sources, including telemetry data, information on spatial variation in habitat quality, passive acoustic data on the temporal pattern of sonar use and its relationship to beaked whale foraging activity, into an individual-based model with a dynamic bioenergetic module that governs individual life history. The predicted effect of disturbance from MFAS on population abundance ranged between population extinction to a slight increase in population abundance. These effects were driven by the interaction between the temporal pattern of MFAS use, baseline movement patterns, the spatial distribution of prey, the nature of beaked whale behavioral response to MFAS and the top-down impact of whale foraging on prey abundance. Based on these findings, we provide recommendations for monitoring of marine mammal populations and highlight key uncertainties to help guide future directions for assessing population impacts of nonlethal disturbance for these and other long-lived animals.Publisher PDFPeer reviewe

    Community led active schools programme (CLASP) exploring the implementation of health interventions in primary schools: headteachers’ perspectives

    Get PDF
    Background: Schools are repeatedly utilised as a key setting for health interventions. However, the translation of effective research findings to the school setting can be problematic. In order to improve effective translation of future interventions, it is imperative key challenges and facilitators of implementing health interventions be understood from a school's perspective. Methods: Nineteen semi-structured interviews were conducted in primary schools (headteachers n = 16, deputy headteacher n = 1, healthy school co-ordinator n = 2). Interviews were transcribed verbatim and analysed using thematic analysis. Results: The main challenges for schools in implementing health interventions were; government-led academic priorities, initiative overload, low autonomy for schools, lack of staff support, lack of facilities and resources, litigation risk and parental engagement. Recommendations to increase the application of interventions into the school setting included; better planning and organisation, greater collaboration with schools and external partners and elements addressing sustainability. Child-centred and cross-curricular approaches, inclusive whole school approaches and assurances to be supportive of the school ethos were also favoured for consideration. Conclusions: This work explores schools' perspectives regarding the implementation of health interventions and utilises these thoughts to create guidelines for developing future school-based interventions. Recommendations include the need to account for variability between school environments, staff and pupils. Interventions with an element of adaptability were preferred over the delivery of blanket fixed interventions. Involving schools in the developmental stage would add useful insights to ensure the interventions can be tailored to best suit each individual schools' needs and improve implementation.11 page(s

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore