4,333 research outputs found

    Ab initio calculations with the dynamical vertex approximation

    Full text link
    We propose an approach for the ab initio calculation of materials with strong electronic correlations which is based on all local (fully irreducible) vertex corrections beyond the bare Coulomb interaction. It includes the so-called GW and dynamical mean field theory and important non-local correlations beyond, with a computational effort estimated to be still manageable.Comment: 8 pages, 6 figure

    The Cerium volume collapse: Results from the LDA+DMFT approach

    Full text link
    The merger of density-functional theory in the local density approximation (LDA) and many-body dynamical mean field theory (DMFT) allows for an ab initio calculation of Ce including the inherent 4f electronic correlations. We solve the DMFT equations by the quantum Monte Carlo (QMC) technique and calculate the Ce energy, spectrum, and double occupancy as a function of volume. At low temperatures, the correlation energy exhibits an anomalous region of negative curvature which drives the system towards a thermodynamic instability, i.e., the γ\gamma-to-α\alpha volume collapse, consistent with experiment. The connection of the energetic with the spectral evolution shows that the physical origin of the energy anomaly and, thus, the volume collapse is the appearance of a quasiparticle resonance in the 4f-spectrum which is accompanied by a rapid growth in the double occupancy.Comment: 4 pages, 3 figure

    Composition and distribution of the peracarid crustacean fauna along a latitudinal transect off Victoria Land (Ross Sea, Antarctica) with special emphasis on the Cumacea

    Get PDF
    The following study was the first to describe composition and structure of the peracarid fauna systematically along a latitudinal transect off Victoria Land (Ross Sea, Antarctica). During the 19th Antarctic expedition of the Italian research vessel “Italica” in February 2004, macrobenthic samples were collected by means of a Rauschert dredge with a mesh size of 500 m at depths between 85 and 515 m. The composition of peracarid crustaceans, especially Cumacea was investigated. Peracarida contributed 63% to the total abundance of the fauna. The peracarid samples were dominated by amphipods (66%), whereas cumaceans were represented with 7%. Previously, only 13 cumacean species were known, now the number of species recorded from the Ross Sea increased to 34. Thus, the cumacean fauna of the Ross Sea, which was regarded as the poorest in terms of species richness, has to be considered as equivalent to that of other high Antarctic areas. Most important cumacean families concerning abundance and species richness were Leuconidae, Nannastacidae, and Diastylidae. Cumacean diversity was lowest at the northernmost area (Cape Adare). At the area off Coulman Island, which is characterized by muddy sediment, diversity was highest. Diversity and species number were higher at the deeper stations and abundance increased with latitude. A review of the bathymetric distribution of the Cumacea from the Ross Sea reveals that most species distribute across the Antarctic continental shelf and slope. So far, only few deep-sea records justify the assumption of a shallow-water–deep-sea relationship in some species of Ross Sea Cumacea, which is discussed from an evolutionary point of view

    Optical Properties of Correlated Materials -- or Why Intelligent Windows may look Dirty

    Full text link
    Materials with strong electronic Coulomb correlations play an increasing role in modern materials applications. "Thermochromic" systems, which exhibit thermally induced changes in their optical response, provide a particularly interesting case. The optical switching associated with the metal-insulator transition of vanadium dioxide, for example, has been proposed for use in numerous applications, ranging from anti-laser shields to "intelligent" windows, which selectively filter radiative heat in hot weather conditions. Are present-day electronic structure techniques able to describe, or -- eventually even predict -- such a kind of behavior ? How far are we from materials design using correlated oxides ? These are the central questions we try to address in this article. We review recent attempts of calculating optical properties of correlated materials within dynamical mean field theory, and summarize results for vanadium dioxide obtained within a novel scheme aiming at particularly simple and efficient calculations of optical transition matrix elements within localized basis sets. Finally, by optimizing the geometry of "intelligent windows", we argue that this kind of technique can in principle be used to provide guidance for experiments, thus giving a rather optimistic answer to the above questions.Comment: 11 pages, 4 figures, Phys. Status Solidi B 246, in print (2009), also available as psi-k Scientific Highlight of the Month, no. 88, August 2008, http://www.psi-k.org/newsletters/News_88/Highlight_88.pd

    Mechanisms of jet formation on the giant planets

    Get PDF
    The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are variously thought to be driven by differential radiative heating of the upper atmosphere or by intrinsic heat fluxes emanating from the deep interior. But existing models cannot account for the different flow configurations on the giant planets in an energetically consistent manner. Here a three-dimensional general circulation model is used to show that the different flow configurations can be reproduced by mechanisms universal across the giant planets if differences in their radiative heating and intrinsic heat fluxes are taken into account. Whether the equatorial jet is prograde or retrograde depends on whether the deep intrinsic heat fluxes are strong enough that convection penetrates into the upper troposphere and generates strong equatorial Rossby waves there. Prograde equatorial jets result if convective Rossby wave generation is strong and low-latitude angular momentum flux divergence owing to baroclinic eddies generated off the equator is sufficiently weak (Jupiter and Saturn). Retrograde equatorial jets result if either convective Rossby wave generation is weak or absent (Uranus) or low-latitude angular momentum flux divergence owing to baroclinic eddies is sufficiently strong (Neptune). The different speeds and widths of the off-equatorial jets depend, among other factors, on the differential radiative heating of the atmosphere and the altitude of the jets, which are vertically sheared. The simulations have closed energy and angular momentum balances that are consistent with observations of the giant planets.Comment: 21 pages, 10 figure

    Consistent LDA'+DMFT approach to electronic structure of transition metal oxides: charge transfer insulators and correlated metals

    Full text link
    We discuss the recently proposed LDA'+DMFT approach providing consistent parameter free treatment of the so called double counting problem arising within the LDA+DMFT hybrid computational method for realistic strongly correlated materials. In this approach the local exchange-correlation portion of electron-electron interaction is excluded from self consistent LDA calculations for strongly correlated electronic shells, e.g. d-states of transition metal compounds. Then the corresponding double counting term in LDA+DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit - FLL) form of the Hubbard model interaction term. We present the results of extensive LDA'+DMFT calculations of densities of states, spectral densities and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in paramagnetic phase: charge transfer insulators (MnO, CoO and NiO) and strongly correlated metals (SrVO3 and Sr2RuO4). It is shown that for NiO and CoO systems LDA'+DMFT qualitatively improves the conventional LDA+DMFT results with FLL type of double counting, where CoO and NiO were obtained to be metals. We also include in our calculations transition metal 4s-states located near the Fermi level missed in previous LDA+DMFT studies of these monooxides. General agreement with optical and X-ray experiments is obtained. For strongly correlated metals LDA^\prime+DMFT results agree well with earlier LDA+DMFT calculations and existing experiments. However, in general LDA'+DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen states positions, as compared to the conventional LDA+DMFT.Comment: 13 pages, 11 figures, 1 table. In v2 there some additional clarifications are include

    No jacket required – new fungal lineage defies dress code

    Full text link
    Analyses of environmental DNAs have provided tantalizing evidence for “rozellida” or “cryptomycota”, a clade of mostly undescribed and deeply diverging aquatic fungi. Here, we put cryptomycota into perspective through consideration of Rozella , the only clade member growing in culture. This is timely on account of the publication in Nature of the first images of uncultured cryptomycota from environmental filtrates, where molecular probes revealed non‐motile cyst‐like structures and motile spores, all lacking typical fungal chitinous cell walls. Current studies of Rozella can complement these fragmentary observations from environmental samples. Rozella has a fungal‐specific chitin synthase and its resting sporangia have walls that appear to contain chitin. Cryptomycota, including Rozella , lack a cell wall when absorbing food but like some other fungi, they may have lost their “dinner jacket” through convergence. Rather than evolutionary intermediates, the cryptomycota may be strange, divergent fungi that evolved from an ancestor with a nearly complete suite of classical fungal‐specific characters.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90101/1/94_ftp.pd

    Dynamical mean-field approach to materials with strong electronic correlations

    Full text link
    We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
    corecore