795 research outputs found

    The combined Lagrangian advection method

    Get PDF
    We present and test a new hybrid numerical method for simulating layerwise-two-dimensional geophysical flows. The method radically extends the original Contour-Advective Semi-Lagrangian (CASL) algorithm by combining three computational elements for the advection of general tracers (e.g. potential vorticity, water vapor, etc.): (1) a pseudospectral method for large scales, (2) Lagrangian contours for intermediate to small scales, and (3) Lagrangian particles for the representation of general forcing and dissipation. The pseudo-spectral method is both efficient and highly accurate at large scales, while contour advection is efficient and accurate at small scales, allowing one to simulate extremely finescale structure well below the basic grid scale used to represent the velocity field. The particles allow one to efficiently incorporate general forcing and dissipation

    Vortical control of forced two-dimensional turbulence

    Get PDF
    A new numerical technique for the simulation of forced two-dimensional turbulence (Dritschel and Fontane, 2010) is used to examine the validity of Kraichnan-Batchelor scaling laws at higher Reynolds number than previously accessible with classical pseudo-spectral methods,making use of large simulation ensembles to allow a detailed consideration of the inverse cascade in a quasi-steady state. Our results support the recent finding of Scott (2007), namely that when a direct enstrophy cascading range is well-represented numerically, a steeper energy spectrum proportional to k^(−2) is obtained in place of the classical k^(−5/3) prediction. It is further shown that this steep spectrum is associated with a faster growth of energy at large scales, scaling like t^(−1) rather than Kraichnan’s prediction of t^(−3/2). The deviation from Kraichnan’s theory is related to the emergence of a population of vortices that dominate the distribution of energy across scales, and whose number density and vorticity distribution with respect to vortex area are related to the shape of the enstrophy spectrum. An analytical model is proposed which closely matches the numerical spectra between the large scales and the forcing scale

    On the origin of steep edges and filaments in vorticity and potential vorticity fields

    Get PDF
    High-resolution numerical calculations are shown which capture the fundamental process responsible for the intensification of vorticity gradients in an isolated vortex subject to externally imposed distrubances. Imposition of almost any weak strain or shear field in stripping away the relatively weak vorticity at the edge of the vortex and leaves it with gradients four to six orders of magnitude greater than in the initial state. Calculations displaying such enormous gradients have never been reported previously, because of the artificial eddy diffusivities that always limit such gradients in standard numerical models. The present calculations, which have no such limitations, have been made possible by the development of a novel and robust new numerical technique for vortex dynamics called contour surgery

    Simply-connected vortex-patch shallow-water quasi-equilibria

    Get PDF
    This work is supported by a UK Natural Environment Research Council studentshipWe examine the form, properties, stability and evolution of simply-connected vortex-patch relative quasi-equilibria in the single-layer ƒ-plane shallow-water model of geophysical fluid dynamics. We examine the effects of the size, shape and strength of vortices in this system, represented by three distinct parameters completely describing the families of the quasi-equilibria. Namely, these are the ratio γ=L/LD between the horizontal size of the vortices and the Rossby deformation length; the aspect ratio λ between the minor to major axes of the vortex; and a potential vorticity (PV)-based Rossby number Ro=q′/ƒ, the ratio of the PV anomaly q′ within the vortex to the Coriolis frequency ƒ. By defining an appropriate steadiness parameter, we find that the quasi-equilibria remain steady for long times, enabling us to determine the boundary of stability λc=λc(γ, Ro), for 0.25≤γ≤6 and |Ro|≤1. By calling two states which share γ,|Ro| and λ ‘equivalent’, we find a clear asymmetry in the stability of cyclonic (Ro>0) and anticyclonic (Ro<0) equilibria, with cyclones being able to sustain greater deformations than anticyclones before experiencing an instability. We find that ageostrophic motions stabilise cyclones and destabilise anticyclones. Both types of vortices undergo the same main types of unstable evolution, albeit in different ranges of the parameter space, (a) vacillations for large-γ, large-Ro states, (b) filamentation for small-γ states and (c) vortex splitting, asymmetric for intermediate-γ and symmetric for large-γ states.Publisher PDFPeer reviewe

    Ergodicity and spectral cascades in point vortex flows on the sphere

    Get PDF
    A.C.P. was supported under DOD (MURI) Grant No. N000141110087 ONR. The computations were supported by the CUNY HPCC under NSF Grants No. CNS-0855217 and No. CNS-0958379.We present results for the equilibrium statistics and dynamic evolution of moderately large [n = O (102 - 103)] numbers of interacting point vortices on the sphere under the constraint of zero mean angular momentum. For systems with equal numbers of positive and negative identical circulations, the density of rescaled energies, p(E), converges rapidly with n to a function with a single maximum with maximum entropy. Ensemble-averaged wave-number spectra of the nonsingular velocity field induced by the vortices exhibit the expected k-1 behavior at small scales for all energies. Spectra at the largest scales vary continuously with the inverse temperature of the system. For positive temperatures, spectra peak at finite intermediate wave numbers; for negative temperatures, spectra decrease everywhere. Comparisons of time and ensemble averages, over a large range of energies, strongly support ergodicity in the dynamics even for highly atypical initial vortex configurations. Crucially, rapid relaxation of spectra toward the microcanonical average implies that the direction of any spectral cascade process depends only on the relative difference between the initial spectrum and the ensemble mean spectrum at that energy, not on the energy, or temperature, of the system.Publisher PDFPeer reviewe

    Impeded inverse energy transfer in the Charney--Hasegawa--Mima model of quasi-geostrophic flows

    Full text link
    The behaviour of turbulent flows within the single-layer quasi-geostrophic (Charney--Hasegawa--Mima) model is shown to be strongly dependent on the Rossby deformation wavenumber λ\lambda (or free-surface elasticity). Herein, we derive a bound on the inverse energy transfer, specifically on the growth rate \d\ell/\dt of the characteristic length scale \ell representing the energy centroid. It is found that \d\ell/\dt\le2\norm q_\infty/(\ell_s\lambda^2), where \norm q_\infty is the supremum of the potential vorticity and s\ell_s represents the potential enstrophy centroid of the reservoir, both invariant. This result implies that in the potential energy dominated regime (sλ1\ell\ge\ell_s\gg\lambda^{-1}), the inverse energy transfer is strongly impeded, in the sense that under the usual time scale no significant transfer of energy to larger scales occurs. The physical implication is that the elasticity of the free surface impedes turbulent energy transfer in wavenumber space, effectively rendering large-scale vortices long-lived and inactive. Results from numerical simulations of forced-dissipative turbulence confirm this prediction.Comment: 8 pages, 2 figures, accepted for publication in JF
    corecore