8 research outputs found

    <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N NMR assignments of self-incompatibility protein homologue 15 from <i>Arabidopsis thaliana</i>

    Get PDF
    The SPH proteins are a large family of small, disulphide-bonded, secreted proteins, originally found to be involved in the self-incompatibility response in the field poppy (Papaver rhoeas). They are now known to be widely distributed in plants, many containing multiple members of this protein family. Apart from the PrsS proteins in Papaver the function of these proteins is unknown but they are thought to be involved in plant development and cell signalling. There has been no structural study of SPH proteins to date. Using the Origami strain of E. coli, we cloned and expressed one member of this family, SPH15 from Arabidopsis thaliana, as a folded thioredoxin-fusion protein, purified it from the cytosol, and cleaved it to obtain the secreted protein. We here report the assignment of the NMR spectra of SPH15, which contains 112 residues plus three N-terminal amino acids from the vector. The secondary structure propensity from TALOS+ shows that it contains eight beta strands and connecting loops. This is largely in agreement with predictions from the amino acid sequence, which show an additional C-terminal strand

    Combined bezafibrate and medroxyprogesterone acetate: potential novel therapy for acute myeloid leukaemia

    Get PDF
    Background: The majority of acute myeloid leukaemia (AML) patients are over sixty years of age. With current treatment regimens, survival rates amongst these, and also those younger patients who relapse, remain dismal and novel therapies are urgently required. In particular, therapies that have anti-leukaemic activity but that, unlike conventional chemotherapy, do not impair normal haemopoiesis. Principal Findings: Here we demonstrate the potent anti-leukaemic activity of the combination of the lipid-regulating drug bezafibrate (BEZ) and the sex hormone medroxyprogesterone acetate (MPA) against AML cell lines and primary AML cells. The combined activity of BEZ and MPA (B/M) converged upon the increased synthesis and reduced metabolism of prostaglandin D2 (PGD2) resulting in elevated levels of the downstream highly bioactive, anti-neoplastic prostaglandin 15-deoxy Δ12,14 PGJ2 (15d-PGJ2). BEZ increased PGD2 synthesis via the generation of reactive oxygen species (ROS) and activation of the lipid peroxidation pathway. MPA directed prostaglandin synthesis towards 15d-PGJ2 by inhibiting the PGD2 11ÎČ -ketoreductase activity of the aldo-keto reductase AKR1C3, which metabolises PGD2 to 9α11ÎČ-PGF2α. B/M treatment resulted in growth arrest, apoptosis and cell differentiation in both AML cell lines and primary AML cells and these actions were recapitulated by treatment with 15d-PGJ2. Importantly, the actions of B/M had little effect on the survival of normal adult myeloid progenitors. Significance: Collectively our data demonstrate that B/M treatment of AML cells elevated ROS and delivered the anti-neoplastic actions of 15d-PGJ2. These observations provide the mechanistic rationale for the redeployment of B/M in elderly and relapsed AML

    Steroid Biomarkers and Genetic Studies Reveal Inactivating Mutations in Hexose-6-Phosphate Dehydrogenase in Patients with Cortisone Reductase Deficiency

    No full text
    Context: Cortisone reductase deficiency (CRD) is characterized by a failure to regenerate cortisol from cortisone via 11ÎČ-hydroxysteroid dehydrogenase type 1 (11ÎČ-HSD1), resulting in increased cortisol clearance, activation of the hypothalamic-pituitary-axis (HPA) and ACTH-mediated adrenal androgen excess. 11ÎČ-HSD1 oxoreductase activity requires the reduced nicotinamide adenine dinucleotide phosphate-generating enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the endoplasmic reticulum. CRD manifests with hyperandrogenism resulting in hirsutism, oligo-amenorrhea, and infertility in females and premature pseudopuberty in males. Recent association studies have failed to corroborate findings that polymorphisms in the genes encoding H6PDH (R453Q) and 11ÎČ-HSD1 (Intron 3 inserted adenine) interact to cause CRD

    Searches for the Z gamma decay mode of the Higgs boson and for new high-mass resonances in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    SCOAP

    Search for heavy charged long-lived particles in proton-proton collisions at root s=13 TeV using an ionisation measurement with the ATLAS detector

    Get PDF
    This Letter presents a search for heavy charged long-lived particles produced in proton–proton collisions at √s = 13 TeV at the LHC using a data sample corresponding to an integrated luminosity of 36.1 fb−1 collected by the ATLAS experiment in 2015 and 2016. These particles are expected to travel with a velocity significantly below the speed of light, and therefore have a specific ionisation higher than any high-momentum Standard Model particle of unit charge. The pixel subsystem of the ATLAS detector is used in this search to measure the ionisation energy loss of all reconstructed charged particles which traverse the pixel detector. Results are interpreted assuming the pair production of R-hadrons as composite colourless states of a long-lived gluino and Standard Model partons. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross-sections and gluino masses are set, assuming the gluino always decays to two quarks and a 100 GeV stable neutralino. R-hadrons with lifetimes above 1.0 ns are excluded at the 95% confidence level, with lower limits on the gluino mass ranging between 1290 GeV and 2060 GeV. In the case of stable R-hadrons, the lower limit on the gluino mass at the 95% confidence level is 1890 GeV
    corecore