21 research outputs found

    Genetic ablation of inositol 1,4,5-Trisphosphate receptor type 2 (IP3R2) fails to modify disease progression in a mouse model of Spinocerebellar Ataxia type 3

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.This work has been funded by National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020, PTDC/NEUNMC/3648/2014 and COMPETE-FEDER (POCI-01-0145-FEDER-016818); fellowships to DCG (2021.08121.BD), DMF (SFRH/BD/147947/2019), JSC (SFRH/BD/140624/2018), ANC (SFRH/BPD/118779/2016), AVF (UMINHO/BIL-CNCG/2022/11), SGG (SFRH/BD/101298/2014), and JFV (2020.05109.BD); FCT Scientific Employment Stimulus (CEEC)—Individual Call position to SDS (CEECIND/00685/2020); grants from the Bial Foundation (037/18) and “the la Caixa” Foundation (LCF/PR/HR21/52410024) to JFO; and by the projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023, supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). It was also supported by grants from the ICVS Scientific Microscopy Platform, a member of the national infrastructure PPBI—Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122 and national funds through the Foundation for Science and Technology (FCT)

    Exploring the correlations between epi indicators of COVID-19 and the concentration of pharmaceutical compounds in Wastewater Treatment Plants in Northern Portugal

    Get PDF
    The COVID-19 pandemic caused by the SARS-CoV-2 virus led to changes in the lifestyle and human behaviour, which resulted in different consumption patterns of some classes of pharmaceuticals including curative, symptom-relieving, and psychotropic drugs. The trends in the consumption of these compounds are related to their concentrations in wastewater systems, since incompletely metabolised drugs (or their metabolites back transformed into the parental form) may be detected and quantified by analytical methods. Pharmaceuticals are highly recalcitrant compounds and conventional activated sludge processes implemented in wastewater treatment plants (WWTP) are ineffective at degrading these substances. As a results, these compounds end up in waterways or accumulate in the sludge, being a serious concern given their potential effects on ecosystems and public health. Therefore, it is crucial to evaluate the presence of pharmaceuticals in water and sludge to assist in the search for more effective processes. In this work, eight pharmaceuticals from five therapeutic classes were analysed in wastewater and sludge samples collected in two WWTP located in the Northern Portugal, during the third COVID-19 epidemic wave in Portugal. The two WWTP demonstrated a similar pattern with respect to the concentration levels in that period. However, the drugs loads reaching each WWTP were dissimilar when normalising the concentrations to the inlet flow rate. Acetaminophen (ACET) was the compound detected at highest concentrations in aqueous samples of both WWTP (98. 516 g L1 in WWTP2 and 123. 506 g L1in WWTP1), indicating that this drug is extensively used without the need of a prescription, known of general public knowledge as an antipyretic and analgesic agent to treat pain and fever. The concentrations determined in the sludge samples were below 1.65 µg g1 in both WWTP, the highest value being found for azithromycin (AZT). This result may be justified by the physico-chemical characteristics of the compound that favour its adsorption to the sludge surface through ionic interactions. It was not possible to establish a clear relationship between the incidence of COVID-19 cases in the sewer catchment and the concentration of drugs detected in the same period. However, looking at the data obtained, the high incidence of COVID-19 in January 2021 is in line with the high concentration of drugs detected in the aqueous and sludge samples but prediction of drug load from viral load data was unfeasible.This study was supported by the Competitiveness and Internationalisation Operational Programme, Lisbon Regional Operational Programme and Algarve Regional Operational Programme with the support of FEDER, through the Incentive Scheme: research and development activities and investment in testing and optimisation (upscaling) infrastructures in the context of COVID-19, through the Project “SARS CONTROL: Evaluation of the impacts of SARS-CoV-2 on the urban water cycle and the downstream effects on Public Health" (Ref. 070076). Acknowledge is also due to the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit, and by LABBELS – Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, LA/P/0029/2020. Strategic funding from FCT to cE3c and BioISI Research Units (UIDB/00329/2020 and UIDB/04046/2020) and to the Associate Laboratory CHANGE (LA/P/0121/2020) is also gratefully acknowledged. ARS holds an FCT grant SFRH/BD/131905/2017 and COVID/BD/151951/2021.ARLR and MFRP acknowledge the financial support from LA/P/0045/2020 (ALiCE), UIDB/50020/2020 and UIDP/50020/2020 (LSRE-LCM), funded by national funds through FCT/MCTES (PIDDAC). ARLR acknowledges FCT funding under DL57/2016 Transitory Norm Programme.info:eu-repo/semantics/publishedVersio

    Encapsulation of Nanostructures in a Dielectric Matrix Providing Optical Enhancement in Ultrathin Solar Cells

    Get PDF
    The incorporation of nanostructures in optoelectronic devices for enhancing their optical performance is widely studied. However, several problems related to the processing complexity and the low performance of the nanostructures have hindered such actions in real-life devices. Herein, a novel way of introducing gold nanoparticles in a solar cell structure is proposed in which the nanostructures are encapsulated with a dielectric layer, shielding them from high temperatures and harsh growth processing conditions of the remaining device. Through optical simulations, an enhancement of the effective optical path length of approximately four times the nominal thickness of the absorber layer is verified with the new architecture. Furthermore, the proposed concept in a Cu(In,Ga)Se2 solar cell device is demonstrated, where the short-circuit current density is increased by 17.4%. The novel structure presented in this work is achieved by combining a bottom-up chemical approach of depositing the nanostructures with a top-down photolithographic process, which allows for an electrical contact.This work was funded in part by the Fundação para a Ciência e a Tecnologia (FCT) under Grants IF/00133/2015, PD/BD/142780/2018 and SFRH/BD/ 146776/2019. The authors also want to acknowledge the European Union’s Horizon 2020 Research and Innovation Programme through the ARCIGS-M project under Grant 720887, the Special Research Fund (BOF) of Hasselt University, the FCT through the project NovaCell (PTDC/CTM-CTM/28075/ 2017), and InovSolarCells (PTDC/FISMAC/29696/2017) co-funded by FCT and the ERDF through COMPETE2020. The authors also want to acknowledge Sandra Maya for the production of images used in this work.info:eu-repo/semantics/publishedVersio

    Preclinical assessment of mesenchymal-stem-cell-based therapies in spinocerebellar ataxia type 3

    Get PDF
    The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies for neurodegenerative diseases, including spinocerebellar ataxias. Spinocerebellar ataxia type 3 (SCA3)—or Machado–Joseph disease (MJD)—is the most common dominant ataxia, being mainly characterized by motor deficits; however, SCA3/MJD has a complex and heterogeneous pathophysiology, involving many CNS brain regions, contributing to the lack of effective therapies. Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for CNS disorders. Beyond their differentiation potential, MSCs secrete a broad range of neuroregulatory factors that can promote relevant neuroprotective and immunomodulatory actions in different pathophysiological contexts. The objective of this work was to study the effects of (1) human MSC transplantation and (2) human MSC secretome (CM) administration on disease progression in vivo, using the CMVMJD135 mouse model of SCA3/MJD. Our results showed that a single CM administration was more beneficial than MSC transplantation—particularly in the cerebellum and basal ganglia—while no motor improvement was observed when these cell-based therapeutic approaches were applied in the spinal cord. However, the effects observed were mild and transient, suggesting that continuous or repeated administration would be needed, which should be further tested.This research was funded by the National Ataxia Foundation (NAF) and by Portuguese national funds, through the Foundation for Science and Technology (FCT)—projects UIDB/50026/2020, UIDP/50026/2020, POCI-01-0145-FEDER-029206, and through the Santa Casa Neuroscience Awards (Santa Casa da Misericórdia Lisboa)—project MC-04/17. Additionally, this project was funded by the ICVS Scientific Microscopy Platform, a member of the national infrastructure PPBI—Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122). S.C.S. received an individual fellowship within the project TUBITAK/0007/2014. The FCT funded individual fellowships to J.S C., A.N.-C., B.M.- P., F.G.T., R.L., S.M., N.A.S., C.S.-C., and S.D.-S. (SFRH/BD/140624/2018, SFRH/BPD/118779/2016, SFRH/BD/120124/2016, SFRH/BPD/118408/2016, PD/BDE/127836/2016, CEECIND/01902/2017, CEECIND/04794/2017, CEECIND/03887/2017, and CEECIND/00685/2020)

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore