The incorporation of nanostructures in optoelectronic devices for enhancing their
optical performance is widely studied. However, several problems related to the
processing complexity and the low performance of the nanostructures have
hindered such actions in real-life devices. Herein, a novel way of introducing gold
nanoparticles in a solar cell structure is proposed in which the nanostructures are
encapsulated with a dielectric layer, shielding them from high temperatures and
harsh growth processing conditions of the remaining device. Through optical
simulations, an enhancement of the effective optical path length of approximately
four times the nominal thickness of the absorber layer is verified with the new
architecture. Furthermore, the proposed concept in a Cu(In,Ga)Se2 solar cell
device is demonstrated, where the short-circuit current density is increased by
17.4%. The novel structure presented in this work is achieved by combining a
bottom-up chemical approach of depositing the nanostructures with a top-down
photolithographic process, which allows for an electrical contact.This work was funded in part by the Fundação para a Ciência e a Tecnologia
(FCT) under Grants IF/00133/2015, PD/BD/142780/2018 and SFRH/BD/
146776/2019. The authors also want to acknowledge the European Union’s
Horizon 2020 Research and Innovation Programme through the ARCIGS-M
project under Grant 720887, the Special Research Fund (BOF) of Hasselt
University, the FCT through the project NovaCell (PTDC/CTM-CTM/28075/
2017), and InovSolarCells (PTDC/FISMAC/29696/2017) co-funded by FCT
and the ERDF through COMPETE2020. The authors also want to acknowledge Sandra Maya for the production of images used in this work.info:eu-repo/semantics/publishedVersio