62 research outputs found

    The Gas Temperature of Starless Cores in Perseus

    Get PDF
    In this paper we study the determinants of starless core temperatures in the Perseus molecular cloud. We use NH3 (1,1) and (2,2) observations to derive core temperatures (T_kin) and data from the COMPLETE Survey of Star Forming Regions and the c2d Spitzer Legacy Survey for observations of the other core and molecular cloud properties. The kinetic temperature distribution probed by NH3 is in the fairly narrow range of 9 - 15 K. We find that cores within the clusters IC348 and NGC1333 are significantly warmer than "field" starless cores, and T_kin is higher within regions of larger extinction-derived column density. Starless cores in the field are warmer when they are closer to class O/I protostars, but this effect is not seen for those cores in clusters. For field starless cores, T_kin is higher in regions in which the 13CO linewidth and the 1.1mm flux from the core are larger, and T_kin is lower when the the peak column density within the core and average volume density of the core are larger. There is no correlation between T_kin and 13CO linewidth, 1.1mm flux, density or peak column density for those cores in clusters. The temperature of the cloud material along the line of sight to the core, as measured by CO or far-infrared emission from dust, is positively correlated with core temperature when considering the collection of cores in the field and in clusters, but this effect is not apparent when the two subsamples of cores are considered separately.Comment: Accepted to ApJ; 13 pages, including 3 tables and three figure

    Early phase of massive star formation: A case study of Infrared dark cloud G084.81-01.09

    Full text link
    We mapped the MSX dark cloud G084.81-01.09 in the NH3 (1,1) - (4,4) lines and in the J = 1-0 transitions of 12CO, 13CO, C18O and HCO+ in order to study the physical properties of infrared dark clouds, and to better understand the initial conditions for massive star formation. Six ammonia cores are identified with masses ranging from 60 to 250 M_sun, a kinetic temperature of 12 K, and a molecular hydrogen number density n(H2) ~ 10^5 cm^-3. In our high mass cores, the ammonia line width of 1 km/s is larger than those found in lower mass cores but narrower than the more evolved massive ones. We detected self-reversed profiles in HCO+ across the northern part of our cloud and velocity gradients in different molecules. These indicate an expanding motion in the outer layer and more complex motions of the clumps more inside our cloud. We also discuss the millimeter wave continuum from the dust. These properties indicate that our cloud is a potential site of massive star formation but is still in a very early evolutionary stage

    Probing the structure of a birthplace of intermediate-mass stars: Ammonia cores in Lynds 1340

    Full text link
    Lynds 1340, a molecular cloud forming intermediate-mass stars, has been mapped in the NH_3(1,1) and (2,2) transitions with the Effelsberg 100m telescope. We observed the whole area of the cloud where C18O emission was detected earlier, at a 40 arcsec grid, with additional positions towards the C18O peaks and optically invisible IRAS point sources. Our observations covered an area of 170 arcmin^2, corresponding to about 5.15 pc^2 at a distance of 600 pc, and revealed 10 ammonia cores. The cores, occupying some 7% of the mapped area, probably represent the highest density regions of L1340. Their total mass is 80 solar mass, about 6% of the mass traced by C18O. Six cores are associated with optically invisible IRAS point sources. Their average nonthermal line width is 0.78 kms^{-1}, while the same quantity for the four starless cores is 0.28 kms^{-1}. We suggest that the narrow-line cores are destined to form low-mass stars, whereas small groups of intermediate-mass stars are being formed in the turbulent cores. The features traced by NH_3, 13CO, C18O and HI obey the line width-size relation log Delta v_{NT} = 0.41(0.06)log R_{1/2}+ 0.12(0.06). Comparison of sizes, densities and nonthermal line widths of ammonia cores with those of C18O and 13CO structures supports the scenario in which core formation has been induced by turbulent fragmentation. The typical physical properties of the ammonia cores of L1340, R_{1/2} =0.08 pc, T_{kin}=13.8 K, Delta v_{total}=0.64 kms^{-1}, and M =9 solar mass are close to those of the high-mass star forming Perseus and Orion B clouds.Comment: 13 pages, 11 figures. Accepted by A&

    Deuteration as an evolutionary tracer in massive-star formation

    Full text link
    Theory predicts, and observations confirm, that the column density ratio of a molecule containing D to its counterpart containing H can be used as an evolutionary tracer in the low-mass star formation process. Since it remains unclear if the high-mass star formation process is a scaled-up version of the low-mass one, we investigated whether the relation between deuteration and evolution can be applied to the high-mass regime. With the IRAM-30m telescope, we observed rotational transitions of N2D+ and N2H+ and derived the deuterated fraction in 27 cores within massive star-forming regions understood to represent different evolutionary stages of the massive-star formation process. Results. Our results clearly indicate that the abundance of N2D+ is higher at the pre-stellar/cluster stage, then drops during the formation of the protostellar object(s) as in the low-mass regime, remaining relatively constant during the ultra-compact HII region phase. The objects with the highest fractional abundance of N2D+ are starless cores with properties very similar to typical pre-stellar cores of lower mass. The abundance of N2D+ is lower in objects with higher gas temperatures as in the low-mass case but does not seem to depend on gas turbulence. Our results indicate that the N2D+-to-N2H+ column density ratio can be used as an evolutionary indicator in both low- and high-mass star formation, and that the physical conditions influencing the abundance of deuterated species likely evolve similarly during the processes that lead to the formation of both low- and high-mass stars.Comment: Accepted by A&AL, 4 pages, 2 figures, 2 appendices (one for Tables, one for additional figures

    Far infrared mapping of three Galactic star forming regions : W3(OH), S 209 & S 187

    Get PDF
    Three Galactic star forming regions associated with W3(OH), S209 and S187 have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands centered at ~ 140 and 200 micron using the TIFR 100 cm balloon borne FIR telescope. These maps show extended FIR emission with structures. The HIRES processed IRAS maps of these regions at 12, 25, 60 & 100 micron have also been presented for comparison. Point-like sources have been extracted from the longest waveband TIFR maps and searched for associations in the other five bands. The diffuse emission from these regions have been quantified, which turns out to be a significant fraction of the total emission. The spatial distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209), has been determined reliably from the maps in TIFR bands. The dust temperature and optical depth maps show complex morphology. In general the dust around S209 has been found to be warmer than that in W3(OH) region.Comment: Accepted for publication in Journal of Astrophysics and Astronomy (20 pages including 8 figures & 3 tables

    Luminosity Functions of Spitzer Identified Protostars in Nine Nearby Molecular Clouds

    Full text link
    We identify protostars in Spitzer surveys of nine star-forming molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine photometry from 2MASS J, H, and Ks bands and Spitzer IRAC and MIPS 24 micron bands to create 1 - 24 micron spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities (Lbol), we derive a relationship between Lbol, L_MIR (integrated from 1 - 24 microns), and SED slope. Estimations of Lbol for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high mass star forming clouds peak near 1 Lsun and show a tail extending toward luminosities above 100 Lsun. The luminosity functions of the low mass star forming clouds do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 Lsun. Finally, we examine the luminosity functions as a function of the local surface density of YSOs. In the Orion molecular cloud, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models which invoke competitive accretion, although we do not find strong agreement of the high mass star forming clouds with any of the models.Comment: 76 pages, 18 figures, 7 tables. Accepted for publication in the Astronomical Journa

    A spectral line survey of the starless and proto-stellar cores detected by BLAST toward the Vela-D molecular cloud

    Full text link
    We present a 3-mm and 1.3-cm spectral line survey conducted with the Mopra 22-m and Parkes 64-m radio telescopes of a sample of 40 cold dust cores, previously observed with BLAST, including both starless and proto-stellar sources. 20 objects were also mapped using molecular tracers of dense gas. To trace the dense gas we used the molecular species NH3, N2H+, HNC, HCO+, H13CO+, HCN and H13CN, where some of them trace the more quiescent gas, while others are sensitive to more dynamical processes. The selected cores have a wide variety of morphological types and also show physical and chemical variations, which may be associated to different evolutionary phases. We find evidence of systematic motions in both starless and proto-stellar cores and we detect line wings in many of the proto-stellar cores. Our observations probe linear distances in the sources >~0.1pc, and are thus sensitive mainly to molecular gas in the envelope of the cores. In this region we do find that, for example, the radial profile of the N2H+(1-0) emission falls off more quickly than that of C-bearing molecules such as HNC(1-0), HCO+(1-0) and HCN(1-0). We also analyze the correlation between several physical and chemical parameters and the dynamics of the cores. Depending on the assumptions made to estimate the virial mass, we find that many starless cores have masses below the self-gravitating threshold, whereas most of the proto-stellar cores have masses which are near or above the self-gravitating critical value. An analysis of the median properties of the starless and proto-stellar cores suggests that the transition from the pre- to the proto-stellar phase is relatively fast, leaving the core envelopes with almost unchanged physical parameters.Comment: Submitted for publication to Astronomy & Astrophysics on January 18th, 201

    Turbulent Control of the Star Formation Efficiency

    Full text link
    Supersonic turbulence plays a dual role in molecular clouds: On one hand, it contributes to the global support of the clouds, while on the other it promotes the formation of small-scale density fluctuations, identifiable with clumps and cores. Within these, the local Jeans length \Ljc is reduced, and collapse ensues if \Ljc becomes smaller than the clump size and the magnetic support is insufficient (i.e., the core is ``magnetically supercritical''); otherwise, the clumps do not collapse and are expected to re-expand and disperse on a few free-fall times. This case may correspond to a fraction of the observed starless cores. The star formation efficiency (SFE, the fraction of the cloud's mass that ends up in collapsed objects) is smaller than unity because the mass contained in collapsing clumps is smaller than the total cloud mass. However, in non-magnetic numerical simulations with realistic Mach numbers and turbulence driving scales, the SFE is still larger than observational estimates. The presence of a magnetic field, even if magnetically supercritical, appears to further reduce the SFE, but by reducing the probability of core formation rather than by delaying the collapse of individual cores, as was formerly thought. Precise quantification of these effects as a function of global cloud parameters is still needed.Comment: Invited review for the conference "IMF@50: the Initial Mass Function 50 Years Later", to be published by Kluwer Academic Publishers, eds. E. Corbelli, F. Palla, and H. Zinnecke

    Physical properties of dense cores in Orion B9

    Full text link
    We aim to determine the physical and chemical properties of dense cores in Orion B9. We observed the NH3(1,1) and (2,2), and the N2H+(3-2) lines towards the submm peak positions. These data are used in conjunction with our LABOCA 870 micron dust continuum data. The gas kinetic temperature in the cores is between ~9.4-13.9 K. The non-thermal velocity dispersion is subsonic in most of the cores. The non-thermal linewidth in protostellar cores appears to increase with increasing bolometric luminosity. The core masses are very likely drawn from the same parent distribution as the core masses in Orion B North. Starless cores in the region are likely to be gravitationally bound, and thus prestellar. Some of the cores have a lower radial velocity than the systemic velocity of the region, suggesting that they are members of the "low-velocity part" of Orion B. The observed core-separation distances deviate from the corresponding random-like model distributions. The distances between the nearest-neighbours are comparable to the thermal Jeans length. The fractional abundances of NH3 and N2H+ in the cores are ~1.5-9.8x10^{-8} and ~0.2-5.9x10^{-10}, respectively. The NH3 abundance appears to decrease with increasing H2 column and number densities. The NH3/N2H+ column density ratio is larger in starless cores than in cores with embedded protostars. The core population in Orion B9 is comparable in physical properties to those in nearby low-mass star-forming regions. It is unclear if the origin of cores could be explained by turbulent fragmentation. On the other hand, many of the core properties conform with the picture of dynamic core evolution. The Orion B9 region has probably been influenced by the feedback from the nearby Ori OB 1b group, and the fragmentation of the parental cloud into cores could be caused by gravitational instability.Comment: 17 pages, 11 figures, 7 tables. Accepted for publication in Astronomy and Astrophysics. Version 2: minor language corrections adde

    Inefficient star formation: The combined effects of magnetic fields and radiative feedback

    Get PDF
    We investigate the effects of magnetic fields and radiative protostellar feedback on the star formation process using self-gravitating radiation magnetohydrodynamical calculations. We present results from a series of calculations of the collapse of 50 solar mass molecular clouds with various magnetic field strengths and with and without radiative transfer. We find that both magnetic fields and radiation have a dramatic impact on star formation, though the two effects are in many ways complementary. Magnetic fields primarily provide support on large scales to low density gas, whereas radiation is found to strongly suppress small-scale fragmentation by increasing the temperature in the high-density material near the protostars. With strong magnetic fields and radiative feedback the net result is an inefficient star formation process with a star formation rate of ~< 10% per free-fall time that approaches the observed rate, although we have only been able to follow the calculations for ~1/3 of a free-fall time beyond the onset of star formation.Comment: 14 pages, 6 figures, accepted for publication in MNRAS. Movies for all the runs and version with high-res figures available from http://users.monash.edu.au/~dprice/pubs/mclusterRT/ v2: minor changes to match published versio
    corecore