12 research outputs found

    Metabarcoding data reveal vertical multitaxa variation in topsoil communities during the colonization of deglaciated forelands

    Get PDF
    Ice-free areas are expanding worldwide due to dramatic glacier shrinkage and are undergoing rapid colonization by multiple lifeforms, thus representing key environments to study ecosystem development. It has been proposed that the colonization dynamics of deglaciated terrains is different between surface and deep soils but that the heterogeneity between communities inhabiting surface and deep soils decreases through time. Nevertheless, tests of this hypothesis remain scarce, and it is unclear whether patterns are consistent among different taxonomic groups. Here, we used environmental DNA metabarcoding to test whether community diversity and composition of six groups (Eukaryota, Bacteria, Mycota, Collembola, Insecta, and Oligochaeta) differ between the surface (0–5 cm) and deeper (7.5–20 cm) soil at different stages of development and across five Alpine glaciers. Taxonomic diversity increased with time since glacier retreat and with soil evolution. The pattern was consistent across groups and soil depths. For Eukaryota and Mycota, alpha-diversity was highest at the surface. Time since glacier retreat explained more variation of community composition than depth. Beta-diversity between surface and deep layers decreased with time since glacier retreat, supporting the hypothesis that the first 20 cm of soil tends to homogenize through time. Several molecular operational taxonomic units of bacteria and fungi were significant indicators of specific depths and/or soil development stages, confirming the strong functional variation of microbial communities through time and depth. The complexity of community patterns highlights the importance of integrating information from multiple taxonomic groups to unravel community variation in response to ongoing global changes

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Optimization and throughput estimation of optical ground Networks for LEO-downlinks, GEO-feeder links and GEO-relays

    No full text
    Optical satellite communications play an increasingly important role in a number of space applications. However, if the system concept includes optical links to the surface of the Earth, the limited availability due to clouds and other atmospheric impacts need to be considered to give a reliable estimate of the system performance. An OGS network is required for increasing the availability to acceptable figures. In order to realistically estimate the performance and achievable throughput in various scenarios, a simulation tool has been developed under ESA contract. The tool is based on a database of 5 years of cloud data with global coverage and can thus easily simulate different optical ground station network topologies for LEO- and GEO-to-ground links. Further parameters, like e.g. limited availability due to sun blinding and atmospheric turbulence, are considered as well. This paper gives an overview about the simulation tool, the cloud database, as well as the modelling behind the simulation scheme. Several scenarios have been investigated: LEO-to-ground links, GEO feeder links, and GEO relay links. The key results of the optical ground station network optimization and throughput estimations will be presented. The implications of key technical parameters, as e.g. memory size aboard the satellite, will be discussed. Finally, potential system designs for LEO- and GEO-systems will be presented

    Metabarcoding data reveal vertical multitaxa variation in topsoil communities during the colonization of deglaciated forelands

    No full text
    Ice-free areas are increasing worldwide due to the dramatic glacier shrinkage and are undergoing rapid colonization by multiple lifeforms, thus representing key environments to study ecosystem development. Soils have a complex vertical structure. However, we know little about how microbial and animal communities differ across soil depths and development stages during the colonization of deglaciated terrains, how these differences evolve through time, and whether patterns are consistent among different taxonomic groups. Here, we used environmental DNA metabarcoding to describe how community diversity and composition of six groups (Eukaryota, Bacteria, Mycota, Collembola, Insecta, Oligochaeta) differ between surface (0-5 cm) and relatively deep (7.5-20 cm) soils at different stages of development across five Alpine glaciers. Taxonomic diversity increased with time since glacier retreat and with soil evolution; the pattern was consistent across different groups and soil depths. For Eukaryota, and particularly Mycota, alpha-diversity was generally the highest in soils close to the surface. Time since glacier retreat was a more important driver of community composition compared to soil depth; for nearly all the taxa, differences in community composition between surface and deep soils decreased with time since glacier retreat, suggesting that the development of soil and/or of vegetation tends to homogenize the first 20 cm of soil through time. Within both Bacteria and Mycota, several molecular operational taxonomic units were significant indicators of specific depths and/or soil development stages, confirming the strong functional variation of microbial communities through time and depth. The complexity of community patterns highlights the importance of integrating information from multiple taxonomic groups to unravel community variation in response to ongoing global changes.Sequence data have been processed using the OBITools software suit (version 1.2.9) then filtered and analyzed in R (version 4.0). All scripts to reproduce data processing are provided here and described in the "Methods" section of the manuscript. See "Data Accessibility" section of the manuscript to access raw sequence data. Funding provided by: Horizon 2020 Framework ProgrammeCrossref Funder Registry ID: http://dx.doi.org/10.13039/100010661Award Number: Grant Agreement no. 772284 (IceCommunities)Funding provided by: H2020 European Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/100010663Award Number: 772284Libraries were prepared following the MetaFast protocol (Taberlet et al., 2018) and sequenced using the MiSeq (Bact02 and Fung02) or HiSeq 2500 (Arth02, Coll01, Euka02, Inse01, Olig01, Sper01) Illumina platforms (Illumina, San Diego, CA, USA) with a paired-end approach (2 × 250 bp for Bact02 and Fung02, and 2 × 150 bp for the others markers) at Fasteris (SA, Geneva, Switzerland). For each marker, the sequence depth corresponded to 10,000 reads per sample

    Dynamics and drivers of mycorrhizal fungi after glacier retreat

    No full text
    International audienceSummary The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient‐poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha‐ and beta‐diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground–aboveground linkages, with multifaceted impacts on soil development and associated ecological processes

    Local climate modulates the development of soil nematode communities after glacier retreat

    Get PDF
    International audienceThe worldwide retreat of glaciers is causing a faster than ever increase in ice‐free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global‐scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice‐free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r‐ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K‐ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development

    The importance of species addition ‘versus’ replacement varies over succession in plant communities after glacier retreat

    No full text
    International audienceThe mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition 'versus' replacement. We assessed the role of these processes in the variation (ÎČ-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys. Our findings indicate that addition and replacement concur in determining community changes in deglaciated sites, but their relative importance varied over time. Taxa addition dominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. These changes were aligned with total ÎČ-diversity changes, which were more pronounced between early-successional communities than between late-successional communities (>50 yr since glacier retreat). Despite the complexity of community assembly during plant succession, the observed global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early-successional communities to a predominance of competition later on
    corecore