1,867 research outputs found

    Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope?

    Get PDF
    Data from laboratory flumes and natural streams show that the critical Shields stress for initial sediment motion increases with channel slope, which indicates that particles of the same size are more stable on steeper slopes. This observation is contrary to standard models that predict reduced stability with increasing slope due to the added downstream gravitational force. Processes that might explain this discrepancy are explored using a simple force-balance model, including increased drag from channel walls and bed morphology, variable friction angles, grain emergence, flow aeration, and changes to the local flow velocity and turbulent fluctuations. Surprisingly, increased drag due to changes in bed morphology does not appear to be the cause of the slope dependency because both the magnitude and trend of the critical Shields stress are similar for flume experiments and natural streams, and significant variations in bed morphology in flumes is unlikely. Instead, grain emergence and changes in local flow velocity and turbulent fluctuations seem to be responsible for the slope dependency due to the coincident increase in the ratio of bed-roughness scale to flow depth (i.e., relative roughness). A model for the local velocity within the grain-roughness layer is proposed based on a 1-D eddy viscosity with wake mixing. In addition, the magnitude of near-bed turbulent fluctuations is shown to depend on the depth-averaged flow velocity and the relative roughness. Extension of the model to mixed grain sizes indicates that the coarser fraction becomes increasingly difficult to transport on steeper slopes

    The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout

    Get PDF
    Median grain sizes on riverbeds range from boulders in uplands to silt in lowlands; however, rivers with ~1–5 mm diameter bed sediment are rare. This grain size gap also marks an abrupt transition between gravel- and sand-bedded reaches that is unlike any other part of the fluvial network. Abrupt gravel-sand transitions have been attributed to rapid breakdown or rapid transport of fine gravel, or a bimodal sediment supply, but supporting evidence is lacking. Here we demonstrate that rivers dramatically lose the ability to transport sand as wash load where bed shear velocity drops below ~0.1 m/s, forcing an abrupt transition in bed-material grain size. Using thresholds for wash load and initial motion, we show that the gap emerges only for median bed-material grain sizes of ~1–5 mm due to Reynolds number dependencies in suspension transport. The grain size gap, therefore, is sensitive to material properties and gravity, with coarser gaps predicted on Mars and Titan

    Modeling Sediment Transport in Ice-Walled Subglacial Channels and Its Implications for Esker Formation and Proglacial Sediment Yields

    Get PDF
    Sediment yields from glacierized basins are used to quantify erosion rates on seasonal to decadal timescales as well as conditions at the glacier bed, and eskers hold valuable information about past subglacial hydraulic conditions in their spatial organization, geometry, and sedimentary structures. Ultimately, eskers are a record of past glacio‐fluvial sediment transport, but there is currently no physical model for this process. We develop a 1‐D model of morphodynamics in semicircular bedrock‐floored subglacial channels. We adapt a sediment conservation law developed for mixed alluvial‐bedrock conditions to subglacial channels. Channel evolution is a function of melt opening by viscous heat dissipation from flowing water and creep closure of the overlying ice, to which we add the closure or enlargement due to sediment deposition or removal, respectively. We apply the model to an idealized land‐terminating glacier and find that temporary sediment accumulation in the vicinity of the terminus, or the formation of an incipient esker, is inherent to the dynamics of the channelized water flow. The alluviation of the bed combined with the pressurized channel flow produces unexpected patterns of sediment evacuation: We show that the direction of hysteresis between sediment and water discharge is not necessarily linked to a supply‐ or transport‐limited system, as has been hypothesized for proglacial sediment yields. We also find that the deposition of an incipient esker is a function of a compromise between water discharge and sediment supply, but perhaps more importantly, ice‐surface slope and the temporal pattern of water delivery to the bed

    The role of three-dimensional boundary stresses in limiting the occurrence and size of experimental landslides

    Get PDF
    The occurrence of seepage-induced shallow landslides on hillslopes and steep channel beds is important for landscape evolution and natural hazards. Infinite-slope stability models have been applied for seven decades, but sediment beds generally require higher water saturation levels than predicted for failure, and controlled experiments are needed to test models. We initiated 90 landslides in a 5 m long laboratory flume with a range in sediment sizes (D = 0.7, 2, 5, and 15 mm) and hillslope angles (θ = 20° to 43°), resulting in subsurface flow that spanned the Darcian and turbulent regimes, and failures that occurred with subsaturated and supersaturated sediment beds. Near complete saturation was required for failure in most experiments, with water levels far greater than predicted by infinite-slope stability models. Although 3-D force balance models predict that larger landslides are less stable, observed downslope landslide lengths were typically only several decimeters, not the entire flume length. Boundary stresses associated with short landslides can explain the increased water levels required for failure, and we suggest that short failures are tied to heterogeneities in granular properties. Boundary stresses also limited landslide thicknesses, and landslides progressively thinned on lower gradient hillslopes until they were one grain diameter thick, corresponding to a change from near-saturated to supersaturated sediment beds. Thus, landslides are expected to be thick on steep hillslopes with large frictional stresses acting on the boundaries, whereas landslides should be thin on low-gradient hillslopes or in channel beds with a critical saturation level that is determined by sediment size

    Entrainment and suspension of sand and gravel

    Get PDF
    The entrainment and suspension of sand and gravel are important for the evolution of rivers, deltas, coastal areas, and submarine fans. The prediction of a vertical profile of suspended sediment concentration typically consists of assessing (1) the concentration near the bed using an entrainment relation and (2) the upward vertical distribution of sediment in the water column. Considerable uncertainty exists in regard to both of these steps, especially the near-bed concentration. Most entrainment relations have been tested against limited grain-size-specific data, and no relations have been evaluated for gravel suspension, which can be important in bedrock and mountain rivers. To address these issues, we compiled a database with suspended sediment data from natural rivers and flume experiments, taking advantage of the increasing availability of high-resolution grain size measurements. We evaluated 12 dimensionless parameters that may determine entrainment and suspension relations and applied multivariate regression analysis. A best-fit two-parameter equation (r² = 0.79) shows that near-bed entrainment, evaluated at 10 % of the flow depth, decreases with the ratio of settling velocity to skin-friction shear velocity (w_(si)/u_(∗ skin)), as in previous relations, and increases with Froude number (Fr), possibly due to its role in determining bedload-layer concentrations. We used the Rouse equation to predict concentration upward from the reference level and evaluated the coefficient β_i, which accounts for differences in the turbulent diffusivity of sediment from the parabolic eddy viscosity model used in the Rouse derivation. The best-fit relation for β_i (r² = 0.40) indicates greater relative sediment diffusivities for rivers with greater flow resistance, possibly due to bedform-induced turbulence, and larger w_(si)/u_(∗ skin); the latter dependence is nonlinear and therefore different from standard Rouse theory. In addition, we used empirical relations for gravel saltation to show that our relation for near-bed concentration also provides good predictions for coarse-grained sediment. The new relations extend the calibrated parameter space over a wider range in sediment sizes and flow conditions compared to previous work and result in 95 % of concentration data throughout the water column predicted within a factor of 9

    Entrainment and suspension of sand and gravel

    Get PDF
    The entrainment and suspension of sand and gravel are important for the evolution of rivers, deltas, coastal areas, and submarine fans. The prediction of a vertical profile of suspended sediment concentration typically consists of assessing (1) the concentration near the bed using an entrainment relation and (2) the upward vertical distribution of sediment in the water column. Considerable uncertainty exists in regard to both of these steps, especially the near-bed concentration. Most entrainment relations have been tested against limited grain-size-specific data, and no relations have been evaluated for gravel suspension, which can be important in bedrock and mountain rivers. To address these issues, we compiled a database with suspended sediment data from natural rivers and flume experiments, taking advantage of the increasing availability of high-resolution grain size measurements. We evaluated 12 dimensionless parameters that may determine entrainment and suspension relations and applied multivariate regression analysis. A best-fit two-parameter equation (r² = 0.79) shows that near-bed entrainment, evaluated at 10 % of the flow depth, decreases with the ratio of settling velocity to skin-friction shear velocity (w_(si)/u_(∗ skin)), as in previous relations, and increases with Froude number (Fr), possibly due to its role in determining bedload-layer concentrations. We used the Rouse equation to predict concentration upward from the reference level and evaluated the coefficient β_i, which accounts for differences in the turbulent diffusivity of sediment from the parabolic eddy viscosity model used in the Rouse derivation. The best-fit relation for β_i (r² = 0.40) indicates greater relative sediment diffusivities for rivers with greater flow resistance, possibly due to bedform-induced turbulence, and larger w_(si)/u_(∗ skin); the latter dependence is nonlinear and therefore different from standard Rouse theory. In addition, we used empirical relations for gravel saltation to show that our relation for near-bed concentration also provides good predictions for coarse-grained sediment. The new relations extend the calibrated parameter space over a wider range in sediment sizes and flow conditions compared to previous work and result in 95 % of concentration data throughout the water column predicted within a factor of 9

    The role of three-dimensional boundary stresses in limiting the occurrence and size of experimental landslides

    Get PDF
    The occurrence of seepage-induced shallow landslides on hillslopes and steep channel beds is important for landscape evolution and natural hazards. Infinite-slope stability models have been applied for seven decades, but sediment beds generally require higher water saturation levels than predicted for failure, and controlled experiments are needed to test models. We initiated 90 landslides in a 5 m long laboratory flume with a range in sediment sizes (D = 0.7, 2, 5, and 15 mm) and hillslope angles (θ = 20° to 43°), resulting in subsurface flow that spanned the Darcian and turbulent regimes, and failures that occurred with subsaturated and supersaturated sediment beds. Near complete saturation was required for failure in most experiments, with water levels far greater than predicted by infinite-slope stability models. Although 3-D force balance models predict that larger landslides are less stable, observed downslope landslide lengths were typically only several decimeters, not the entire flume length. Boundary stresses associated with short landslides can explain the increased water levels required for failure, and we suggest that short failures are tied to heterogeneities in granular properties. Boundary stresses also limited landslide thicknesses, and landslides progressively thinned on lower gradient hillslopes until they were one grain diameter thick, corresponding to a change from near-saturated to supersaturated sediment beds. Thus, landslides are expected to be thick on steep hillslopes with large frictional stresses acting on the boundaries, whereas landslides should be thin on low-gradient hillslopes or in channel beds with a critical saturation level that is determined by sediment size

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore