326 research outputs found
The Importance of an Educational Occupation-Based Work program for Young Adults with Intellectual & Developmental Disabilities
Barriers to occupations and transitions to vocational opportunities can be difficult for adolescents and young adults with intellectual and developmental disabilities (I/DD)s to feel confident and pursue job opportunities. Some of the problems stem from the stigma related to the individual’s disability, the contexts surrounding them, and the performance of the work tasks expected. Individuals with I/DDs expressed that not having enough support in the community and the workforce creates significant obstacles to retaining a job. Occupational therapists (OT)s can play a unique role in transition and employment for individuals with an I/DD. With a focus on self-determination and successful employment, the outcomes and development arise significantly for people with I/DDs.Employers and managers who have had experience working with or knew someone with an I/DD had a more positive attitude in employing these individuals. Consequently, individuals with I/DDs stated that they felt more able to complete their job requirements when receiving job training while acquiring self-determination and self-advocacy. Good workplace culture support often includes areas of social opportunities, team-building opportunities, and structure. Training for specific job skills and implementing work programs for individuals with I/DDs encompasses a unique set of skills, knowledge, and abilities necessary for successful occupational performance in the workplace. The Doctoral Capstone Project consists of six educational modules in developing an occupational work program for young adults with I/DDs. The lesson plans provided in the outlined format of the appendices describe the components related to vocational training skills requested by the agency and were executed and demonstrated how an OT can implement lesson plans for a work program within this population
Predicting outcomes of steady-state 13C isotope tracing experiments using Monte Carlo sampling
<p>Abstract</p> <p>Background</p> <p>Carbon-13 (<sup>13</sup>C) analysis is a commonly used method for estimating reaction rates in biochemical networks. The choice of carbon labeling pattern is an important consideration when designing these experiments. We present a novel Monte Carlo algorithm for finding the optimal substrate input label for a particular experimental objective (flux or flux ratio). Unlike previous work, this method does not require assumption of the flux distribution beforehand.</p> <p>Results</p> <p>Using a large <it>E. coli </it>isotopomer model, different commercially available substrate labeling patterns were tested computationally for their ability to determine reaction fluxes. The choice of optimal labeled substrate was found to be dependent upon the desired experimental objective. Many commercially available labels are predicted to be outperformed by complex labeling patterns. Based on Monte Carlo Sampling, the dimensionality of experimental data was found to be considerably less than anticipated, suggesting that effectiveness of <sup>13</sup>C experiments for determining reaction fluxes across a large-scale metabolic network is less than previously believed.</p> <p>Conclusions</p> <p>While <sup>13</sup>C analysis is a useful tool in systems biology, high redundancy in measurements limits the information that can be obtained from each experiment. It is however possible to compute potential limitations before an experiment is run and predict whether, and to what degree, the rate of each reaction can be resolved.</p
Project Team
for their guidance and vision on this project. The Center team would like to extend our appreciation to the many individuals who devoted their time and resources to make this handbook possible. Several individuals supplied site plans for consideration, took time to visit sites, reviewed codes and ordinances, and provided more detailed information on the case studies
Relationship between trait anxiety and health-related factors
Growing evidence indicates that anxious individuals are more likely to engage in unhealthy lifestyle behaviors associated with coronary heart disease. We examined the relationship of Trait Anxiety (T-Anx) with lifestyle behaviors and physiological variables in a sample of 34 college undergraduates scoring in the upper/lower quartiles on T-Anx (50% women). Participants were assessed for physiological variables (BP, BMI) and behaviors including cigarette smoking, activity/exercise level, alcohol intake, and sleep. High T-Anx participants smoked significantly more cigarettes, slept significantly fewer hours, and engaged in significantly less vigorous-intensity physical activity than low T-Anx participants. No significant differences between groups were noted on BP, BMI, overall activity level, or alcohol use. These findings provide evidence that high TAnx college-age individuals engage in unhealthy behaviors
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Th17 cells are more protective than Th1 cells against the intracellular parasite Trypanosoma cruzi
Th17 cells are a subset of CD4+ T cells known to play a central role in the pathogenesis of many autoimmune diseases, as well as in the defense against some extracellular bacteria and fungi. However, Th17 cells are not believed to have a significant function against intracellular infections. In contrast to this paradigm, we have discovered that Th17 cells provide robust protection against Trypanosoma cruzi, the intracellular protozoan parasite that causes Chagas disease. Th17 cells confer significantly stronger protection against T. cruzi-related mortality than even Th1 cells, traditionally thought to be the CD4+ T cell subset most important for immunity to T. cruzi and other intracellular microorganisms. Mechanistically, Th17 cells can directly protect infected cells through the IL-17A-dependent induction of NADPH oxidase, involved in the phagocyte respiratory burst response, and provide indirect help through IL-21-dependent activation of CD8+ T cells. The discovery of these novel Th17 cell-mediated direct protective and indirect helper effects important for intracellular immunity highlights the diversity of Th17 cell roles, and increases understanding of protective T. cruzi immunity, aiding the development of therapeutics and vaccines for Chagas disease
Isolation of Monoclonal Antibodies with Predetermined Conformational Epitope Specificity
Existing technologies allow isolating antigen-specific monoclonal antibodies (mAbs) from B cells. We devised a direct approach to isolate mAbs with predetermined conformational epitope specificity, using epitope mimetics (mimotopes) that reflect the three-dimensional structure of given antigen subdomains. We performed differential biopanning using bacteriophages encoding random peptide libraries and polyclonal antibodies (Abs) that had been affinity-purified with either native or denatured antigen. This strategy yielded conformational mimotopes. We then generated mimotope-fluorescent protein fusions, which were used as baits to isolate single memory B cells from rhesus monkeys (RMs). To amplify RM immunoglobulin variable regions, we developed RM-specific PCR primers and generated chimeric simian-human mAbs with predicted epitope specificity. We established proof-of-concept of our strategy by isolating mAbs targeting the conformational V3 loop crown of HIV Env; the new mAbs cross-neutralized viruses of different clades. The novel technology allows isolating mAbs from RMs or other hosts given experimental immunogens or infectious agents
Four microlensing giant planets detected through signals produced by minor-image perturbations
Funding: Work by C.H. was supported by the grants of National Research Foundation of Korea (2019R1A2C2085. This research was supported by the Korea Astronomy and Space Science Institute under the R&D program (Project No. 2023-1-832-03) supervised by the Ministry of Science and ICT. The MOA project is supported by JSPS KAKENHI Grant Number JP24253004, JP26247023, JP23340064, JP15H00781, JP16H06287, JP17H02871 and JP22H00153. J.C.Y., I.G.S., and S.J.C. acknowledge support from NSF Grant No. AST-2108414. Y.S. acknowledges support from NSF Grant No. 2020740. C.R. was supported by the Research fellowship of the Alexander von Humboldt Foundation. This work was authored by employees of Caltech/IPAC under Contract No. 80GSFC21R0032 with the National Aeronautics and Space Administration. V.B. is supported by PRIN 2022 CUP D53D23002590006. R.F.J. acknowledges support for this project provided by ANID’s Millennium Science Initiative through grant ICN12_009, awarded to the Millennium Institute of Astrophysics (MAS), and by ANID’s Basal project FB210003. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 101004719 (OPTICON - RadioNet Pilot). This work is supported by the Polish MNiSW grant DIR/WK/2018/12.Aims. We investigated the nature of the anomalies appearing in four microlensing events KMT-2020-BLG-0757, KMT-2022-BLG-0732, KMT-2022-BLG-1787, and KMT-2022-BLG-1852. The light curves of these events commonly exhibit initial bumps followed by subsequent troughs that extend across a substantial portion of the light curves. Methods. We performed thorough modeling of the anomalies to elucidate their characteristics. Despite their prolonged durations, which differ from the usual brief anomalies observed in typical planetary events, our analysis revealed that each anomaly in these events originated from a planetary companion located within the Einstein ring of the primary star. It was found that the initial bump arouse when the source star crossed one of the planetary caustics, while the subsequent trough feature occurred as the source traversed the region of minor image perturbations lying between the pair of planetary caustics. Results. The estimated masses of the host and planet, their mass ratios, and the distance to the discovered planetary systems are (Mhost/M⊙, Mplanet/MJ, q/10−3, DL/kpc) = (0.58−0.30+0.33, 10.71−5.61+6.17, 17.61 ± 2.25, 6.67−1.30+0.93) for KMT-2020-BLG-0757, (0.53−0.31+0.31, 1.12−0.65+0.65, 2.01 ± 0.07, 6.66−1.84+1.19) for KMT-2022-BLG-0732, (0.42−0.23+0.32, 6.64−3.64+4.98, 15.07 ± 0.86, 7.55−1.30+0.89) for KMT-2022-BLG-1787, and (0.32−0.19+0.34, 4.98−2.94+5.42, 8.74 ± 0.49, 6.27−1.15+0.90) for KMT-2022-BLG-1852. These parameters indicate that all the planets are giants with masses exceeding the mass of Jupiter in our solar system and the hosts are low-mass stars with masses substantially less massive than the Sun.Peer reviewe
Guidelines for Genome-Scale Analysis of Biological Rhythms
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them
- …