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Abstract Genome biology approaches have made enormous contributions to 
our understanding of biological rhythms, particularly in identifying outputs of 
the clock, including RNAs, proteins, and metabolites, whose abundance oscil-
lates throughout the day. These methods hold significant promise for future 
discovery, particularly when combined with computational modeling. However, 
genome-scale experiments are costly and laborious, yielding “big data” that are 
conceptually and statistically difficult to analyze. There is no obvious consen-
sus regarding design or analysis. Here we discuss the relevant technical consid-
erations to generate reproducible, statistically sound, and broadly useful 
genome-scale data. Rather than suggest a set of rigid rules, we aim to codify 
principles by which investigators, reviewers, and readers of the primary litera-
ture can evaluate the suitability of different experimental designs for measur-
ing different aspects of biological rhythms. We introduce CircaInSilico, a 
web-based application for generating synthetic genome biology data to bench-
mark statistical methods for studying biological rhythms. Finally, we discuss 
several unmet analytical needs, including applications to clinical medicine, and 
suggest productive avenues to address them.

Keywords  circadian rhythms, diurnal rhythms, computational biology, functional 
genomics, systems biology, guidelines, biostatistics, RNA-seq, ChIP-seq, 
proteomics, metabolomics

It has become a cliché to comment on the rapid 
growth of “–omics” technologies in biomedical sci-
ences over the past 20 years. Nevertheless, it is diffi-
cult to overstate the transformative impact that 
genome-scale technologies are having on the practice 
of modern biology, notably including transcriptional, 
proteomic, and metabolomic profiling (Fig. 1A). 
These analytical approaches have had a substantial 
impact on the study of circadian rhythms (Fig. 1B), 
particularly since biological rhythms are ubiquitous 
at every level of organismal physiology and are seem-
ingly custom made for large-scale analysis. Systems 
biology approaches offer enormous opportunities to 
gain insight into the nature of biological rhythms, but 
they also create unique challenges in properly collect-
ing and interpreting large data sets.

Here, we set out to codify unifying principles 
for genome-scale analyses of biological rhythms. 
We confine our discussion to the analysis of rhyth-
mic abundance of RNAs, proteins, and metabo-
lites, as well as rhythmic occupancy of DNA by 
proteins. These guidelines also apply to the study 
of related processes such as promoter activity (Liu 
et al., 1995). We do not discuss the analysis of other 
large data sets, including genomewide association 
studies, mutagenesis and cell-based screens, or the 
use of “wearables” that track physiological param-
eters. All 3 unquestionably produce large data sets 
and are important for the field, but they present 

technical challenges beyond our scope here. We 
further restrict ourselves to discussing general 
principles. When appropriate, we refer the reader 
to more detailed discussions of critical topics such 
as sample collection and statistical benchmarking. 
We emphasize that these guidelines are current at 
the time they were written but should not be used 
as hard rules to replace informed peer review. 
Instead, we hope that this article will formalize a 
consensus regarding best practices for generation 
and analysis of large-scale biological rhythms data 
sets and thereby increase the rigor and reproduc-
ibility of research in our field.

RecommenDAtionS

experimental Design

Before collecting large-scale data on rhythmic 
processes, careful consideration should be given to 
which questions the data are intended to answer. 
For example, an experiment aimed at discovery 
(i.e., a list of cycling transcripts/proteins/metabo-
lites that will be validated with other methods) can 
be done with a less stringent design than experi-
ments aimed at comprehensive identification of all 
cycling entities, along with accurate estimation of 
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their waveform, phase, and amplitude (e.g., Zhang 
et  al., 2014). Key considerations include the preci-
sion and accuracy of the measurements being made, 
the degree of rhythmicity in the data set, and the 
signal-to-noise ratio of the rhythms. These factors 
also depend on the specific model system under 

study and the measurement technology. Even 
closely related experimental approaches (e.g., RNA 
sequencing [RNA-seq] and chromatin immunopre-
cipitation sequencing [ChIP-seq]), influence the 
experimental design in important ways. We begin 
our discussion of experimental design with specific 

Figure 1. the use of systems biology approaches has increased dramatically in the past 20 years. (A) Annual number of publications 
available on Pubmed that contain the keywords “chiP-seq,” “RnA-seq,” “metabolomics,” “Proteomics,” and/or “microarray.” these 
numbers were obtained directly from Pubmed’s “Results by year” section. (B) A Boolean search was used to filter the number of publi-
cations containing the chosen keyword combined with the term “circadian,” “clock,” or both. Both plots depict an increase in the use of 
functional genomics approaches in biology over the past 5 years, in particular the use of RnA-seq, chiP-Seq, and metabolomics.
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recommendations for discovery-based approaches, 
since it is the most common application of systems 
biology techniques to biological rhythms and illus-
trates the key principles of experimental design. We 
conclude this section by discussing variations on 
this theme.

By definition, biological rhythms repeat. We there-
fore recommend collecting at least 2 complete cycles 
of data when detecting rhythmicity (i.e., 48 h for col-
lections under constant conditions). The guiding 
principle behind this recommendation is that when 
identifying a rhythmic process, one would like to 
observe both the peak and trough repeat at least once. 
Simulations show that collecting fewer than 2 cycles 
in a time series makes the resulting data sensitive to 
outliers and can dramatically increase the number of 
false-negatives (see the “Synthetic Data for 
Benchmarking” section). A key caveat is that it is 
often difficult in human and some model organisms 
to collect across more than 1 circadian cycle. In such 
cases, increasing the number of replicates may offset 
the disadvantage of a shorter time series.

When looking for processes regulated solely by the 
circadian clock, it is best to isolate your experimental 
organism from external zeitgebers. In many cases, 
this means constant darkness (DD) and constant tem-
perature, although for photosynthetic organisms, 
constant light (LL) is the conventional manipulation 
for studying intrinsic rhythmicity. For human stud-
ies, consistent conditions (e.g., regular meal, exercise, 
and bed times) are essential. For some tissues, other 
external stimuli (e.g., food) are at least as important 
zeitgebers as light. Many rhythms are damped after 
external stimuli are removed. Therefore, we recom-
mend sampling consecutive days after releasing 
entrained organisms into constant conditions. Studies 
of synchronized in vitro cultures should begin their 
sample collections 24 h after cessation of the synchro-
nizing stimulus to minimize the impact of immediate 
early gene expression. This transient burst and then 
decay in expression of select genes in the first 24 h can 
erroneously look like part of the circadian cycle. In 
constant DD or LL conditions, circadian period length 
can differ from 24 h. For example, after 3 days in DD, 
a short period organism (~23.5 h) will start locomotor 
activity and other behaviors 1.5 h earlier than wild-
type controls. As such, experiments in constant con-
ditions should tune all statistical tests to the 
organism’s empirically determined period length.

If experiments are done under driven (e.g., 
light:dark [LD]) conditions, performing experiments 
over consecutive days is the same as collecting addi-
tional replicates on the first day, as clocks reset each 
day to light. Therefore, when searching for rhythms 
under driven (LD) conditions, 2 or more independent 
days of sample collection can be treated as biological 

replicates. This experimental design can be advanta-
geous when the focus of the study is rhythmicity 
under natural conditions, rather than isolated out-
puts of the circadian clock. Nonconsecutive days may 
be used as replicates in LD; in fact, it can be beneficial 
to separate the collection of replicate samples in LD 
by as much as a week to reduce batch effects.

Data should never be duplicated and concatenated 
prior to statistical testing (Text Box 1.1). By this, we 
mean the deliberate copying and pasting of data to 
artificially generate longer time series. Statistical 
analysis assumes the independence of each data 
point. Duplication of data points renders them no 
longer independent, and statistical tests are necessar-
ily compromised. Furthermore, simulations show 
that duplicated/concatenated data have dramatically 
elevated false-positive rates (Fig. 2). A more subtle 
violation of data independence is seen when techni-
cal replicates (e.g., repeated microarrays on the same 
sample) are treated as biological replicates (i.e., com-
pletely independent biological specimens). In this 
case, natural biological variation will artificially 
repeat across the technical replicates, and p values 
will be inappropriately more significant. Further, we 
caution investigators against double plotting genome-
scale time-series data, even when presented in figures 
for visual purposes. Although double plotting can 
increase clarity, it risks misleading the reader about 
the experimental design.

Historically, the majority of circadian data were 
collected with 4-h sampling resolution. This experi-
mental design dates back to the 1980s, when Northern 
and Western blot assays were common. These experi-
ments typically focused on a few relatively high-
amplitude core clock or output genes/proteins. When 
few entities are tested, multiple testing corrections 
are not necessary. However, as technology improved 
and became more parallel, first with RNase protec-
tion assays and later with first-generation microar-
rays, this experimental design began showing 
weaknesses. Simulations using real and synthetic 
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data confirmed that this sampling density is statisti-
cally underpowered (Atwood and Kay, 2012; Hughes 
et al., 2007, 2009) and contributed to marked lack of 
overlap in cycling genes detected by the first genera-
tion of circadian microarray experiments (Covington 
et al., 2008; Keegan et al., 2007; Wijnen et al., 2006).

For this reason, we recommend collecting samples 
at least every 2 h for studies of circadian rhythms, 
with more frequent sampling when studying ultra-
dian rhythms (Hughes et al., 2009). This recommen-
dation is based on down-sampling simulations of real 
data and on simulations using synthetic data (Atwood 
and Kay, 2012; Hughes et  al., 2007, 2009, 2010). We 
acknowledge that this sampling scheme is not the 
current practice in the field, and we note that studies 
with relatively underpowered statistics can be valu-
able (1) when paired with extensive independent 
validation (Mizrak et al., 2012; Ruben et al., 2012), (2) 
when trailblazing a previously untested technology 
(Hughes et  al., 2012), or (3) when screening a large 
number of samples with an expensive technology 
(Koike et  al., 2012). As such, there is a trade-off 
between the time and money spent collecting addi-
tional samples up front and the amount of resources 
spent validating the hits from these experiments. In 

general, however, the evidence suggests that investi-
gators should invest in more independent sampling 
to maximize the long-term utility of their data and 
the cost benefit of these experiments.

Although independent biological replicates 
increase statistical power, the high cost of “-omics” 
experiments can make it prohibitively expensive to 
collect replicate samples at each time point. 
Simulations indicate that replicates improve statis-
tical power but are weaker than increasing tempo-
ral resolution if one is interested in estimating 
phase or amplitude (Hughes et al., 2010; Hutchison 
et  al., 2015; see also the “Synthetic Data for 
Benchmarking” section). Therefore, good judgment 
must be used in choosing the right combination of 
replicates and temporal resolution for their 
intended application. ChIP-seq assays are an excep-
tion to this rule, since they tend to have greater 
variability between samples than other applica-
tions (Landt et al., 2012; Yang et al., 2014). As such, 
biological replicates at each time point are essential 
when performing ChIP-seq. Experiments on out-
bred organisms (such as humans) and samples col-
lected in natural environments may also require 
independent biological replicates.

Figure 2. Duplicating and concatenating time-series data results in unacceptable false-positive rates. Duplicating and concatenating 
data to generate an artificially long time series eliminates statistical independence of samples. to empirically investigate the conse-
quences of this manipulation, a randomly generated test set containing 1000 arrhythmic time series composed entirely of Gaussian noise 
was used to compare the effects of duplication and concatenation on the false-positive rate. the first simulated experiment had a dura-
tion of 48 h, with a sampling interval of 2 h. the second simulation was composed of every other time point from the first run, which 
resulted in a data set with a duration of 48 h and a sampling interval of 4 h. the third simulation was generated using the first half of the 
second run, which produced a data set with a duration of 24 h and a sampling interval of 4 h. JtK_cycle was used to assess rhythmicity 
with a statistical threshold of adjusted p < 0.05 considered a “hit”. Without concatenation, each run produced conservative false-positive 
rates, with the number of hits less than 2% in every scenario. Adding the first concatenation increased the false-positive rate by a mini-
mum of 8-fold. the second concatenation altered the initial false-positive rate by a minimum of 13-fold, and the third concatenation 
increased the false-positive rate by 18-fold compared with the initial rate.
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When using next-generation sequencing (RNA-
seq, ChIP-seq, etc.), the depth of sequencing per sam-
ple should be explicitly considered in the planning 
stage. Greater sequencing depth costs more but 
results in better accuracy and precision. Finding the 
optimal cost/benefit ratio is not trivial, as the appro-
priate read-depth depends on the species studied, the 
size of the genome/transcriptome, the material from 
which libraries are prepared (e.g., polyA RNA or 
ribosome-depleted total RNA), the dynamic range of 
expression in a given tissue/species, and the strength 
of the circadian signal relative to noise. Oftentimes, it 
is advantageous to cull all features expressed below 
an empirically determined threshold to maximize 
statistical detection of bona fide cycling time series 
(Hughes et al., 2012; Menet et al., 2012; Soneson et al., 
2016). For fly RNA-seq studies of total RNA, simula-
tions show ~10 million reads are needed per sample 
to detect greater than 75% of truly rhythmic tran-
scripts, while ~40 million reads per sample are 
needed for studying mammals (Li et al., 2015). These 
2 reference points can be used to estimate read depths 
necessary in additional organisms based on the rela-
tive size of their transcriptomes. Although a compa-
rable study has not been performed for ChIP-seq, the 
ENCODE consortium recommends 10 to 20 million 
mapped fragments per replicate in mammalian stud-
ies (Landt et al., 2012).

Variability in rhythmic profiles between individuals 
is an underexplored area in biological rhythms, partic-
ularly with respect to “-omics” technologies (Text Box 
2.1). This is largely due to the nature of the experiments; 
for example, it is impossible to collect the suprachias-
matic nuclei (SCN) from an individual mouse more 
than once. Whenever feasible, serial collections from 
the same individual are ideal from a statistical perspec-
tive. When this is impossible, we recommend that stud-
ies of bulk circadian rhythms pool together as many 
different individuals as is practical (e.g., 5 or more indi-
viduals of the same gender) to average out variation 
between dissections and individuals. It is important to 
note that many studies have shown gender differences 
in circadian outputs such as locomotor activity 
rhythms, sleep, and even molecular rhythms. As such, 
some studies may benefit from analyzing the intraindi-
vidual variance in circadian rhythmicity. Given the 
ever-increasing multiplexing capabilities of new 
sequencing machines and the development of new 
technologies requiring less sequencing depth (Derr 
et  al., 2016), it may soon become cost-effective and 
advantageous to analyze rhythmic gene expression in 
individuals (e.g., 3 to 5 individuals per time point).

For human or other studies in outbred popula-
tions, we recommend sampling densities in excess of 
those typically used in laboratory model organisms 
to account for increased variability. Newly developed 
statistical methods, such as MetaCycle’s meta3d 

function and RAIN’s longitudinal mode, have been 
specifically developed to handle these time series 
data (Thaben and Westermark, 2014; Wu et al., 2016).

These recommendations apply to studies of non-
traditional model organisms as well. Circadian 
rhythms are nearly ubiquitous among the kingdoms 
of life, and genome-scale techniques are being applied 
to circadian biology in new models. When practical, 
we recommend benchmarking new experimental 
systems using internal controls (i.e., genes, proteins, 
or processes known to be rhythmic in related spe-
cies). For example, when measuring mRNA rhythms 
in a previously unstudied fungus, investigators 
would benefit from confirming that orthologs of 
known cycling genes such as frq and wc-1 are rhyth-
mic in their experiment. Bioinformatics approaches 
are under development to aid the discovery of clock 
gene orthologs in previously understudied species 
(Romanowski et al., 2014).

As discussed above, we emphasize that there is a 
trade-off between resources spent collecting the ini-
tial genome-scale data set and those spent in smaller-
scale validation studies. For example, certain models 
are hard to breed (e.g., Cry1/Cry2 double-null mice) 
or get enough of (e.g., VIP+ SCN neurons) or danger-
ous (e.g., serial sampling of solid tumors) to do a 2-h, 
2-day time course. If the constraints of the experi-
mental system necessitate a less rigorous experimen-
tal design, additional efforts should be made in 
follow-up experiments to validate the findings of the 
genome-scale analyses. At a minimum, follow-up 
experiments can be used to determine the empirical 
false discovery rate. Finally, when describing these 
experiments, the advantages and disadvantages of 
the experimental design and analysis methods should 
be acknowledged, and additional care should be 
given to their interpretation.

Statistical Analysis

After generating a large data set, 3 steps should be 
taken to prepare the data for performing statistical 
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analyses. The first is to verify the integrity of the raw 
files. For example, in RNA-seq experiments, this 
would include checking that the number of raw reads 
and quality scores are within appropriate ranges and 
that the expected numbers of unique and nonunique 
reads were detected (Hartley and Mullikin, 2015; 
Lohse et al., 2012). Checks for ribosomal, mitochon-
drial, chloroplast, or other contaminating sequences 
should be performed as well. Second, data should be 
normalized and quantified. This is the appropriate 
stage to check whether any internal controls agree 
with previous studies. For example, it is useful to 
check by eye whether known circadian clock genes 
are rhythmic with expected phase relationships. In 
human studies, it is valuable to confirm expected 
rhythms of melatonin and cortisol. For RNA-seq 
experiments, there are numerous methods for nor-
malizing expression data, including situations under 
which the total amount of RNA per cell changes over 
time. These details are beyond the scope of this arti-
cle, but we refer the interested reader to the relevant 
literature (Bray et al., 2016; Dobin et al., 2013; Schmidt 
and Schibler, 1995; Sinturel et al., 2017). In a ChIP-seq 
experiment, variation between samples is best han-
dled by including multiple replicates and normaliz-
ing by randomly down-sampling the data (Koike 
et al., 2012). Third, data may need to be reformatted 
according to input requirements of the statistical 
methods used. For example, transcripts per million 
values in RNA-seq data should be log transformed 
before many statistical analyses.

There are numerous high-quality statistical 
approaches for detecting rhythmicity and estimating 
rhythmic parameters in large data sets. These include 
but are not limited to Haystack (Mockler et al., 2007), 
Lomb-Scargle (Glynn et al., 2006), ARSER (Yang and 
Su, 2010), CircWaveBatch (Oster et  al., 2006), JTK_
Cycle (Hughes et al., 2010), and its successors, RAIN 
(Thaben and Westermark, 2014), eJTK (Hutchison 
et al., 2015), and ABSR (Ren et al., 2016). Each has dif-
ferent strengths and weaknesses. To briefly summa-
rize these methods, tests based on curve fitting such 
as COSOPT (Straume, 2004) are mathematically intu-
itive and work well but are underpowered and com-
putationally inefficient (Hughes et al., 2010). Fourier 
analysis is popular but requires evenly sampled data 
and is limited in the period lengths it can detect 
(Wijnen et al., 2005). Analysis of variance can test for 
time-dependent changes, but it does not explicitly 
test for rhythmicity. JTK_Cycle is powerful and com-
putationally efficient, but phase estimates are inaccu-
rate when using sparse input data (e.g., less than 
every 4 h). Similarly, ARSER is powerful, but it does 
not consider replicates and cannot handle missing 
data. Certain algorithms (e.g., eJTK) perform better 
with replicates than repeated cycles (Hutchison et al., 

2015). Many algorithms rely on an explicit or implicit 
fit to sinusoidal curves that may be problematic if the 
data include pulsed or asymmetric waveforms. We 
note that Haystack (Mockler et  al., 2007) and 
ZeitZeiger (Hughey et al., 2016) are less sensitive to 
waveform shape than other algorithms. Some 
approaches are optimized for distinguishing ultra-
dian rhythms from conventional 24-h rhythms (van 
der Veen and Gerkema, 2017). In many cases, how-
ever, investigators will have the greatest statistical 
power when searching for rhythms equal to conven-
tional 24-h cycles. When studying clock mutants, 
free-running period should be measured with inde-
pendent assays (e.g., free-running locomotor behav-
ior) and statistical analyses of “-omics” data tuned to 
the appropriate organismal period length.

Since a full description of these attributes is beyond 
the scope of this article, we point the interested reader 
to previous studies that have tested these algorithms 
with benchmarking data sets (Deckard et  al., 2013; 
Wu et al., 2014). Moreover, this is a rapidly changing 
field as newer approaches using machine learning 
(Agostinelli et  al., 2016; Hughey, 2017; Laing et  al., 
2017) and N-version programming (Wu et al., 2016) 
have been recently developed that minimize some of 
the pitfalls described above. Time and implementa-
tion will tell which approaches are most valuable.

With algorithms, detecting more rhythmic features 
is not necessarily better, as both false-positive and 
false-negative observations are undesirable. The lit-
erature is rife with claims that each new algorithm 
detects more rhythmic components than previous 
methods. Although more sensitive detection is an 
understandable selling point, false-positives can be 
more costly than false-negatives. For example, a false-
positive “hit” can result in a lab spending time and 
money following up on an ultimately unfruitful line 
of investigation. Therefore, we encourage the use of 
standardized, synthetic data for benchmarking the 
accuracy of each statistical method (see below) and 
rigorous empirical validation using independent 
experimental methods of any new discovery. When 
studying genome-scale rhythms, a conservative 
approach in declaring a given time series to be “rhyth-
mic” is often appropriate.

Regardless of the statistical test being used, correc-
tions for multiple testing are essential for genome-
scale data (Qian and Huang, 2005; Text Box 1.2). The 
false-discovery rate (FDR) should be presented 
whenever discussing the number of rhythmic time 
series within any large data set (Hochberg and 
Benjamini, 1990; Macarthur, 2012; Storey et al., 2005). 
A typical microarray experiment measures upwards 
of 30,000 different transcripts; RNA-seq or ChIP-seq 
can measure millions of different abundances simul-
taneously. The dynamic range of mass spectrometer 
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instruments limits the number of measurements 
made in proteomics and metabolomics, but tens of 
thousands of comparisons are common. The key 
insight when handling such large data is that even 
extremely unlikely patterns resulting in low p values 
become probable if enough measurements are taken. 
Therefore, one must always account for the size of the 
experiment and the number of statistical tests when 
presenting the confidence of a new discovery.

There is no correct statistical threshold at which to 
declare a time series “rhythmic” or “arrhythmic.” 
Therefore, we must reconcile ourselves to probabilis-
tic answers. It is valuable to explore data using differ-
ent statistical cutoffs, and we encourage investigators 
to show the number of cycling time series in a data set 
at different statistical thresholds. Alternatively, when 
considering individual time series, one can report 
how much variance is explained by a rhythmic func-
tion. When performing common downstream experi-
ments based on lists of rhythmic components (e.g., 
pathway analysis), it is useful to verify that results 
are stable with respect to the statistical cutoff. Higher 
FDR thresholds may be advantageous in some cases, 
as overly restrictive cutoffs can disrupt the back-
ground gene set on which models of enrichment are 
based. Amplitude is another key consideration, as 
some rhythmic features may be of such low ampli-
tude as to be biologically meaningless. We note that 
the field as a whole has frequently used “amplitude” 
and “fold change” interchangeably. Nevertheless, in 
many instances, the fold change—that is, the peak 
abundance divided by the trough abundance in a 
measurement—can be of essential biological signifi-
cance. We therefore encourage investigators to 
explore filtering their data using amplitude, fold 
change, and/or the signal-to-noise ratio. Newer 
ontology analysis tools specific for biological rhythms 
such as phase set enrichment analysis (Zhang et al., 
2016) may also be valuable in this context when 
exploring enriched pathways in rhythmic data sets.

The inherent imprecision of probabilistic results 
discussed above has important implications for the 
visual display of large-scale rhythmic data. For exam-
ple, the ubiquitous Venn diagram comparing the 
number of rhythmic components in different data 
sets is often misleading since it simultaneously incor-
porates uncertainty from multiple independent 
experiments (Thaben and Westermark, 2016). As a 
result, Venn diagrams often overstate the differences 
between 2 or more experiments. Given how intui-
tively Venn diagrams display these results, it is unre-
alistic to expect them to disappear from the literature 
anytime soon. Nevertheless, we recommend enhanc-
ing the presentation of these data with several addi-
tional methods. For example, simple heat map 
representations of raw time-series data can be used to 

show whether the overall phase relationships and 
periodicity remain unchanged after a perturbation, 
although the underlying statistics may show differ-
ent numbers of rhythmic components (for an exam-
ple, see Xu et  al., 2011). Even displayed en masse, 
there is great virtue in providing readers access to the 
raw, unmodified data. Similarly, directly comparing 
rhythmic parameters (Thaben and Westermark, 2016) 
of known cycling components (i.e., phase, period, 
amplitude) can yield more granular insight into the 
underlying result (for an example, see Atger et  al., 
2015). This is especially pertinent in cases in which 
the absolute level of expression of a feature may 
change dramatically in response to a perturbation. In 
short, we recommend against relying entirely on sim-
ple comparisons between the number of time series 
deemed to be rhythmic or arrhythmic by statistical 
analysis. Precisely how many rhythmic or arrhythmic 
features are found in a data set is a number that has 
no inherent biological importance.

Indeed, presuming that a given time series is 
arrhythmic based on a high p value is mathematically 
flawed. A high p value means that the observed data 
could have easily been generated under the null 
hypothesis, but it does not formally necessitate that 
the null hypothesis must be accepted. In addition, the 
confidence with which a data series is declared to be 
“rhythmic” depends on experimental details chosen 
by the investigator as discussed above. Simple binary 
divisions such as “rhythmic” and “arrhythmic” are 
thus capricious. In short, it is hard to define an “index 
of arrhythmicity” for time-series data using estab-
lished tools. We note that the field could benefit from 
a more rigorous statistical definition of arrhythmicity 
(Text Box 2.2), perhaps based on how much of the 
variance in a time series is explained by rhythmicity.

An alternative to solving the significance problem 
is to focus on the assessment of rhythmic parameters 
such as period, phase, amplitude, and fold change. In 
many cases, the cardinal circadian parameters more 
accurately describe the underlying biological phe-
nomena than abstract p values. However, we note 
that accurate and reliable estimation of rhythmic 
parameters is a different and tougher statistical chal-
lenge than simply determining whether a time series 
is rhythmic. Small changes in period length, for 
example, are often beyond the resolution offered by a 
typical “-omics” experiment. We encourage the 
development of more rigorous statistical methods for 
comparing rhythmic parameters and the more gen-
eral use of existing tools. An expansion of JTK_Cycle 
took a first step toward this by calculating confidence 
intervals for amplitude measurements (Miyazaki 
et al., 2011). We note that this method relies on fitting 
the data to a cosine curve, which can be statistically 
problematic depending on the shape of the rhythmic 
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time series (Janich et  al., 2015). Furthermore, a 
recently released method called DODR (Thaben and 
Westermark, 2016) can be used for quantifying differ-
ences in rhythmic parameters. Taken together, we 
look forward to the field routinely using robust statis-
tical methods for comparing perturbations of rhyth-
mic parameters (Text Box 2.3).

Synthetic Data for Benchmarking

As discussed above, there are many plausible 
experimental designs and statistical methods for iden-
tifying biological rhythms in large data sets. One way 
out of this wilderness is simply to test the empirical 
statistical power of different analytical pipelines. 

Here, we present CircaInSilico (https://5c077.shin-
yapps.io/Circa_in_Silico/), an online platform that 
allows users to generate data for simulating circadian 
experiments without requiring any a priori program-
ming expertise (Fig. 3). Rhythmic and arrhythmic 
time series are sampled at user-defined intervals, and 
Gaussian noise is superimposed on the data to simu-
late technical and biological variance. Users can spec-
ify (1) the duration of the proposed data collection, (2) 
the total number of time series analyzed, (3) the num-
ber of replicates per time point, (4) the frequency of 
sample collection, (5) whether to include outlier data 
points, and (6) the percentage of time series that are 
genuinely rhythmic. The phases of rhythmic tran-
scripts are uniformly distributed across the entire 
cycle, and period length and amplitude are uniformly 

Figure 3. CircaInSilico generates synthetic time series for benchmarking analytical pipelines. (A) to simulate unique circadian data 
sets, CircaInSilico (https://5c077.shinyapps.io/circa_in_Silico/) allows users to define the duration of the experiment, number of tran-
scripts, number of replicates, amplitude range, period length, and the percentage of rhythmic transcripts. (B) High-amplitude rhythmic 
time series simulated by CircaInSilico. the duration of the experiment was set to 48 h with no replication and a sampling interval of 4 h. 
the period length of the transcript was 24 h, and the amplitude range was set to −7 and 7 (arbitrary units). (c) low-amplitude rhythmic 
time series simulated by CircaInSilico. the duration of the experiment was set to 48 h, with a sampling interval of 1 h. the period length 
was set to 24 h, with an amplitude range from −3 to 3 (arbitrary units). each time point was replicated 3 times, and the trend line repre-
sents the average expression at every time point. (D) Arrhythmic time series simulated by CircaInSilico. the duration of the experiment 
was set to 48 h with no replication and a sampling interval of 2 h.

https://5c077.shinyapps.io/Circa_in_Silico/
https://5c077.shinyapps.io/Circa_in_Silico/
https://5c077.shinyapps.io/Circa_in_Silico/
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distributed within user-defined ranges. These syn-
thetic data are conveniently saved as *.csv files that 
include the true period length, phase, and amplitude.

Using this tool, investigators can systematically 
compare the statistical power of different analytical 
pipelines. To illustrate this, several example compari-
sons are supplied online, including how rhythmic 
identification depends on the duration and frequency 
of sample collection. The trade-off between sampling 
density and phase accuracy is also shown. We 
acknowledge that this tool is a starting point for fur-
ther analyses, as it does not specifically simulate (1) 
batch effects, (2) uneven phase distributions, (3) 
trends and/or “red noise,” or (4) alternatively shaped 
rhythms, such as pulses or asymmetric waves. For 
this reason, a permanent copy of the source code for 
CircaInSilico is freely available on GitHub (https://
github.com/5c077/Circa-in-Silico), and we encour-
age investigators to edit this code to fit their needs 
and to share with the field accordingly.

Simulations of statistical power are especially per-
tinent when proposing experiments to funding agen-
cies that require justification for the number of 
vertebrate animals being used. If investigators can 
estimate parameters such as the animal-to-animal 
variance in measurements of gene, metabolite, or 
protein expression, they can simulate the expected 
data without spending any time or money on wet lab 
experiments. From these simulations, false-negative 
and false-discovery rates can be predicted for a range 
of different experimental designs, and an optimal 
number of vertebrate animals can be ascertained.

Data Sharing

Published work must include all methodological 
details necessary for independent scientists to repro-
duce the results. This is particularly critical to 
genome-scale experiments, in which the enormity of 
the data ensures that even minor technical details can 
have a substantial impact on investigators reusing 
published results. Among these, quality or integrity 
metrics for input samples (e.g., RIN numbers for 
RNA) should be included in the methods. It is essen-
tial that any large-scale data in biological rhythms 
research be deposited in an appropriate, publically 
available database (Text Box 1.3). Data and analytical 
methods must be made available to peer reviewers to 
be downloaded anonymously; all data should be 
made public on acceptance of the manuscript. For the 
convenience of end users, .csv files with raw data and 
calculated p and q values are ideal. We support the 
International Society for Computational Biology’s 
stance that open data sharing is essential in modern 
biology (Berger et  al., 2016), and we encourage the 
appropriate citation and acknowledgment of archived 

data sets. For functional genomic data sets (ChIP-seq, 
RNA-seq, ribosome profiling, methyl-seq, etc.), inves-
tigators typically deposit their data in NCBI’s Gene 
Expression Omnibus (GEO) or Sequence Read 
Archive (SRA). Proteomic data are typically depos-
ited in the European Bioinformatics Institute (EMBL-
EBI) proteomics database: PRoteomics IDEntifications 
(PRIDE). Metabolomic data are typically deposited in 
MetaboLights (EBI) or the Metabolomics Workbench 
(UCSD). Circadian-specific data sets can also be 
deposited in CircadiOmics (Patel et  al., 2012). 
Similarly, it is recommended that authors upload all 
custom-built analytical methods to online reposito-
ries such as BitBucket, GitHub, or Sourceforge.

concluSionS

When undertaking genome-scale analyses of bio-
logical rhythms, we must reconcile ourselves to prob-
abilistic answers as opposed to simple binary 
(rhythmic or arrhythmic) classifications. Although 
systems biology has contributed enormously to our 
understanding of circadian rhythms, it also imposes 
huge costs in terms of time and money spent per-
forming primary experiments and often much more 
in follow-up validation. Most critically, we need to 
ensure that these data contribute new insights into 
the underlying biological principles, rather than 
muddying the water with inaccurate or nonrepro-
ducible observations. A careful balance should be 
struck between the cost of an experimental design 
and the rigor and reproducibility of the results it can 
be expected to generate.

We recommend sampling at least 12 time points 
per cycle across 2 full cycles to optimize statistical 
power. Nevertheless, we acknowledge that many 
valuable studies have been performed with less rig-
orous designs. Certain particularly complicated or 
costly experiments may necessitate deviations from 
this guideline. These include but are not limited to (1) 
ecological studies of nonmodel organisms, (2) studies 
of human health and disease, (3) studies on aging, (4) 
pilot studies of new technical approaches, and (5) 
studies on especially costly or complicated breeds of 
mice. A key recommendation discussed above that 
applies to such studies is that there is a trade-off 
between discovery and validation, and explicit con-
sideration of such issues in scientific reports will help 
to inform other researchers. In other words, addi-
tional efforts taken to validate novel findings can 
compensate for compromises made in the initial 
experimental design.

We propose 3 broadly applicable “golden rules” 
for conducting systems biology research on biologi-
cal rhythms (Text Box 1). These guidelines will help 

https://github.com/5c077/Circa-in-Silico
https://github.com/5c077/Circa-in-Silico
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ensure that published results properly account for the 
inherent uncertainty of such large-scale experiments 
and provide useful resources to future investigators. 
To date, the emphasis of these experiments has been 
in cataloging rhythmic profiles in different organisms 
and tissues. We believe that future progress in more 
accurately quantifying perturbations in systems-level 
rhythms (Text Box 2) will contribute to a deeper 
understanding of circadian output pathways and dis-
ease states. We emphasize that multiple technically 
independent lines of evidence are a universal solu-
tion to improve the reproducibility and reliability of 
any experimental discovery.
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