66 research outputs found

    Benthic foraminifera living in Gulf of Mexico bathyal and abyssal sediments : community analysis and comparison to metazoan meiofaunal biomass and density

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 2617-2626, doi:10.1016/j.dsr2.2008.07.011.Benthic foraminiferal biomass, density, and species composition were determined at ten sites in the Gulf of Mexico. During June 2001 and June 2002, sediment samples were collected with a GoMex boxcorer. A 7.5-cm diameter subcore was taken from a box core collected at each site and sliced into 1-cm or 2-cm sections to a depth of 2 or 3 cm; the >63-mm fraction was examined shipboard for benthic foraminifera. Individual foraminifers were extracted for adenosine triphosphate (ATP) using a luciferin-luciferase assay, which indicated the total ATP content per specimen; that data was converted to organic carbon. Foraminiferal biomass and density varied substantially (~2-53 mg C m-2; ~3,600-44,500 individuals m-2, respectively) and inconsistently with water depth. For example, although two ~1000-m deep sites were geographically separated by only ~75 km, the foraminiferal biomass at one site was relatively low (~9 mg C m-2) while the other site had the highest foraminiferal biomass (~53 mg C m-2). Although most samples from Sigsbee Plain (>3000 m) had low biomass, one Sigsbee site had >20 mg foraminiferal C m-2. The foraminiferal community from all sites (i.e., bathyal and abyssal locales) was dominated by agglutinated, rather than calcareous or tectinous, species. Foraminiferal density never exceeded that of metazoan meiofauna at any site. Foraminiferal biomass, however, exceeded metazoan meiofaunal biomass at five of the ten sites, indicating that foraminifera constitute a major component of the Gulf’s deep-water meiofaunal biomass.Funded by Minerals Management Service contract 1435-01-99-CT-30991 to G.T. Rowe (Texas A&M University)

    Do Meio- and Macrobenthic Nematodes Differ in Community Composition and Body Weight Trends with Depth?

    Get PDF
    Nematodes occur regularly in macrobenthic samples but are rarely identified from them and are thus considered exclusively a part of the meiobenthos. Our study compares the generic composition of nematode communities and their individual body weight trends with water depth in macrobenthic (>250/300 µm) samples from the deep Arctic (Canada Basin), Gulf of Mexico (GOM) and the Bermuda slope with meiobenthic samples (<45 µm) from GOM. The dry weight per individual (µg) of all macrobenthic nematodes combined showed an increasing trend with increasing water depth, while the dry weight per individual of the meiobenthic GOM nematodes showed a trend to decrease with increasing depth. Multivariate analyses showed that the macrobenthic nematode community in the GOM was more similar to the macrobenthic nematodes of the Canada Basin than to the GOM meiobenthic nematodes. In particular, the genera Enoploides, Crenopharynx, Micoletzkyia, Phanodermella were dominant in the macrobenthos and accounted for most of the difference. Relative abundance of non-selective deposit feeders (1B) significantly decreased with depth in macrobenthos but remained dominant in the meiobenthic community. The occurrence of a distinct assemblage of bigger nematodes of high dry weight per individual in the macrobenthos suggests the need to include nematodes in macrobenthic studies

    Justify your alpha

    Get PDF
    Benjamin et al. proposed changing the conventional “statistical significance” threshold (i.e.,the alpha level) from p ≤ .05 to p ≤ .005 for all novel claims with relatively low prior odds. They provided two arguments for why lowering the significance threshold would “immediately improve the reproducibility of scientific research.” First, a p-value near .05provides weak evidence for the alternative hypothesis. Second, under certain assumptions, an alpha of .05 leads to high false positive report probabilities (FPRP2 ; the probability that a significant finding is a false positive

    Justify your alpha

    Get PDF
    In response to recommendations to redefine statistical significance to p ≤ .005, we propose that researchers should transparently report and justify all choices they make when designing a study, including the alpha level

    First record of harpacticoid copepods from Lake Tahoe, United States: two new species of Attheyella (Harpacticoida, Canthocamptidae)

    No full text
    Benthic harpacticoids were collected for the first time at Lake Tahoe, California-Nevada, United States. Two species were identified as members of the genus Attheyella Brady, 1880. The genus Attheyella comprises about 150 species within six subgenera, but only twelve species have previously been reported from North American freshwater habitats. The two new species of Attheyella described here have a 3-segmented endopod on P1 and 2-segmented P2–P4 endopods, the distal segment of exopod of P2–P4 has three outer spines, and the P5 has five setae on the exopod and six setae on the baseoendopod. Attheyella (Attheyella) tahoensissp. n. most closely resembles A. (A.) idahoensis (Marsh, 1903) from Idaho, Montana, and Alaska (United States) and A. (A.) namkungi Kim, Soh & Lee, 2005 from Gosu Cave in South Korea. They differ mainly by the number of setae on the distal endopodal segment of P2–P4. In addition, intraspecific variation has been observed on the caudal rami. Attheyella (Neomrazekiella) tessiaesp. n. is characterized by the extension of P5 baseoendopod, 2-segmented endopod of female P2–P3, and naked third seta of male P5 exopod. The two new species are likely endemic to Lake Tahoe, an isolated alpine lake within the Great Basin watershed in the western United States

    First record of harpacticoid copepods from Lake Tahoe, United States: two new species of Attheyella (Harpacticoida, Canthocamptidae)

    No full text
    Benthic harpacticoids were collected for the first time at Lake Tahoe, California-Nevada, United States. Two species were identified as members of the genus Attheyella Brady, 1880. The genus Attheyella comprises about 150 species within six subgenera, but only twelve species have previously been reported from North American freshwater habitats. The two new species of Attheyella described here have a 3-segmented endopod on P1 and 2-segmented P2–P4 endopods, the distal segment of exopod of P2–P4 has three outer spines, and the P5 has five setae on the exopod and six setae on the baseoendopod. Attheyella (Attheyella) tahoensissp. n. most closely resembles A. (A.) idahoensis (Marsh, 1903) from Idaho, Montana, and Alaska (United States) and A. (A.) namkungi Kim, Soh & Lee, 2005 from Gosu Cave in South Korea. They differ mainly by the number of setae on the distal endopodal segment of P2–P4. In addition, intraspecific variation has been observed on the caudal rami. Attheyella (Neomrazekiella) tessiaesp. n. is characterized by the extension of P5 baseoendopod, 2-segmented endopod of female P2–P3, and naked third seta of male P5 exopod. The two new species are likely endemic to Lake Tahoe, an isolated alpine lake within the Great Basin watershed in the western United States

    A new genus of Cletopsyllidae (Copepoda, Harpacticoida) from Gulf of Mexico

    No full text
    A new genus and new species of the family Cletopsyllidae Huys & Willems, 1989 from deep-sea sediment in the Gulf of Mexico, are reported and fully described and illustrated. The new genus Pentacletopsyllus (type species: P. montagni sp. n.) can be distinguished from the four known genera of the family by antennule segmentation, length ratio of first and second endopodal segments of P1, and armature pattern on P5 exopod. It also differs from its sister genera by the rostrum being bifid at the tip, third segment of the female antennulea smooth posterior margin, the baseoendopod of P5 with biarticulate outer setophore bearing basal seta, and female caudal rami without lobate expansion. A revised key to species of the family Cletopsyllidae Huys & Willems, 1989 is provided

    A new genus of Cletopsyllidae (Copepoda, Harpacticoida) from Gulf of Mexico

    No full text
    A new genus and new species of the family Cletopsyllidae Huys & Willems, 1989 from deep-sea sediment in the Gulf of Mexico, are reported and fully described and illustrated. The new genus Pentacletopsyllus (type species: P. montagni sp. n.) can be distinguished from the four known genera of the family by antennule segmentation, length ratio of first and second endopodal segments of P1, and armature pattern on P5 exopod. It also differs from its sister genera by the rostrum being bifid at the tip, third segment of the female antennulea smooth posterior margin, the baseoendopod of P5 with biarticulate outer setophore bearing basal seta, and female caudal rami without lobate expansion. A revised key to species of the family Cletopsyllidae Huys & Willems, 1989 is provided
    • …
    corecore