1,970 research outputs found

    Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae)

    Get PDF
    The hydrodynamic bases for the stability of locomotory motions in fishes are poorly understood, even for those fishes, such as the rigid-bodied smooth trunkfish Lactophrys triqueter, that exhibit unusually small amplitude recoil movements during rectilinear swimming. We have studied the role played by the bony carapace of the smooth trunkfish in generating trimming forces that self-correct for instabilities. The flow patterns, forces and moments on and around anatomically exact, smooth trunkfish models positioned at both pitching and yawing angles of attack were investigated using three methods: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. Models positioned at various pitching angles of attack within a flow tunnel produced well-developed counter-rotating vortices along the ventro-lateral keels. The vortices developed first at the anterior edges of the ventro-lateral keels, grew posteriorly along the carapace, and reached maximum circulation at the posterior edge of the carapace. The vortical flow increased in strength as pitching angles of attack deviated from 0°, and was located above the keels at positive angles of attack and below them at negative angles of attack. Variation of yawing angles of attack resulted in prominent dorsal and ventral vortices developing at far-field locations of the carapace; far-field vortices intensified posteriorly and as angles of attack deviated from 0°. Pressure distribution results were consistent with the DPIV findings, with areas of low pressure correlating well with regions of attached, concentrated vorticity. Lift coefficients of boxfish models were similar to lift coefficients of delta wings, devices that also generate lift through vortex generation. Furthermore, nose-down and nose-up pitching moments about the center of mass were detected at positive and negative pitching angles of attack, respectively. The three complementary experimental approaches all indicate that the carapace of the smooth trunkfish effectively generates self-correcting forces for pitching and yawing motions — a characteristic that is advantageous for the highly variable velocity fields experienced by trunkfish in their complex aquatic environment. All important morphological features of the carapace contribute to producing the hydrodynamic stability of swimming trajectories in this species

    Flow Patterns Around the Carapaces of Rigid-bodied, Multi-propulsor Boxfishes (Teleostei: Ostraciidae)

    Get PDF
    Boxfishes (Teleostei: Ostraciidae) are rigid-body, multi-propulsor swimmers that exhibit unusually small amplitude recoil movements during rectilinear locomotion. Mechanisms producing the smooth swimming trajectories of these fishes are unknown, however. Therefore, we have studied the roles the bony carapaces of these fishes play in generating this dynamic stability. Features of the carapaces of four morphologically distinct species of boxfishes were measured, and anatomically-exact stereolithographic models of the boxfishes were constructed. Flow patterns around each model were investigated using three methods: 1) digital particle image velocimetry (DPIV), 2) pressure distribution measurements, and 3) force balance measurements. Significant differences in both cross-sectional and longitudinal carapace morphology were detected among the four species. However, results from the three interrelated approaches indicate that flow patterns around the various carapaces are remarkably similar. DPIV results revealed that the keels of all boxfishes generate strong longitudinal vortices that vary in strength and position with angle of attack. In areas where attached, concentrated vorticity was detected using DPIV, low pressure also was detected at the carapace surface using pressure sensors. Predictions of the effects of both observed vortical flow patterns and pressure distributions on the carapace were consistent with actual forces and moments measured using the force balance. Most notably, the three complementary experimental approaches consistently indicate that the ventral keels of all boxfishes, and in some species the dorsal keels as well, effectively generate self-correcting forces for pitching motions—a characteristic that is advantageous for the highly variable velocity fields in which these fishes reside

    Dynamics and Energetics of Animal Swimming and Flying: Introduction

    Get PDF
    A few broad general questions have been central to the study of the dynamics and energetics of animal swimming and flying since the field began. A partial list includes: 1. What are the biomechanical bases for swimming and flying in the various groups of animals? 2. What are the kinematic and kinetic bases for swimming and flying? How do the shapes and movements of involved body parts generate thrust, drag, lift, dynamic stability, and maneuverability? 3. What are the energy costs of swimming and flying

    Unsupplemented Artemia Diet Results in Reduced Growth and Jaw Dysmorphogenesis in Zebrafish

    Get PDF
    The number of laboratories using zebrafish as an experimental animal model has risen tremendously over the past two decades (Craig et al., 2006). As a result, the number of zebrafish facilities around the world has dramatically increased to meet the elevated demand for proper animal care and maintenance. In order to meet this demand, aquaculture facilities must employ husbandry protocols designed to produce a constant supply of healthy, viable eggs. Surprisingly, many husbandry strategies, particularly feeding protocols, are frequently passed down from members of one lab to another in a colloquial fashion without rigorous experimental validation. An ideal diet should consist of a minimal variety of foodstuffs designed to be nutritionally complete, simple to prepare, non-fouling, and cost-effective. Previous studies aimed at streamlining adult zebrafish feeding strategies in large aquaculture facilities have emphasized cost-effective, single-food models, but such diets lead to diminished survivorship and reproductive capacity (Goolish et al., 1999; Meinelt et al., 1999; Barnard & Bagatto, 2002), suggesting that these diets are lacking in some key nutritional component(s). Restricting adult fish diets to single foodstuffs, while desirable from a time and cost perspective, may not provide the trace mineral balance needed for adequate hormone and enzyme production, proper skeletal formation, and other biochemical or physiological needs. Nonetheless, given the intense breeding schedules many facilities are forced to adopt to meet research needs, a sin

    The Embryonic Vertebrate Heart Tube Is a Dynamic Suction Pump

    Get PDF
    The embryonic vertebrate heart begins pumping blood long before the development of discernable chambers and valves. At these early stages, the heart tube has been described as a peristaltic pump. Recent advances in confocal laser scanning microscopy and four-dimensional visualization have warranted another look at early cardiac structure and function. We examined the movement of cells in the embryonic zebrafish heart tube and the flow of blood through the heart and obtained results that contradict peristalsis as a pumping mechanism in the embryonic heart. We propose a more likely explanation of early cardiac dynamics in which the pumping action results from suction due to elastic wave propagation in the heart tube

    Openness in participation, assessment, and policy making upon issues of environment and environmental health: a review of literature and recent project results

    Get PDF
    Issues of environment and environmental health involve multiple interests regarding e.g. political, societal, economical, and public concerns represented by different kinds of organizations and individuals. Not surprisingly, stakeholder and public participation has become a major issue in environmental and environmental health policy and assessment. The need for participation has been discussed and reasoned by many, including environmental legislators around the world. In principle, participation is generally considered as desirable and the focus of most scholars and practitioners is on carrying out participation, and making participation more effective. In practice also doubts regarding the effectiveness and importance of participation exist among policy makers, assessors, and public, leading even to undermining participatory practices in policy making and assessment

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good
    corecore