3 research outputs found

    Measurements of photo-nuclear jet production in Pb plus Pb collisions with ATLAS

    Get PDF
    Ultra-peripheral heavy ion collisions provide a unique opportunity to study the parton distributions in the colliding nuclei via the measurement of photo-nuclear jet production. An analysis of jet production in ultra-peripheral Pb+Pb collisions at √sNN = 5.02 TeV performed using data collected with the ATLAS detector in 2015 is described. The data set corresponds to a total Pb+Pb integrated luminosity of 0.38 nb−1. The ultra-peripheral collisions are selected using a combination of forward neutron and rapidity gap requirements. The cross-sections, not unfolded for detector response, are compared to results from Pythia Monte Carlo simulations re-weighted to match a photon spectrum obtained from the STARlight model. Qualitative agreement between data and these simulations is observed over a broad kinematic range suggesting that using these collisions to measure nuclear parton distributions is experimentally realisable

    Measurements of photo-nuclear jet production in Pb + Pb collisions with ATLAS

    Get PDF
    Ultra-peripheral heavy ion collisions provide a unique opportunity to study the parton distributions in the colliding nuclei via the measurement of photo-nuclear jet production. An analysis of jet production in ultra-peripheral Pb+Pb collisions at √sNN = 5.02 TeV performed using data collected with the ATLAS detector in 2015 is described. The data set corresponds to a total Pb+Pb integrated luminosity of 0.38 nb⁻¹. The ultra-peripheral collisions are selected using a combination of forward neutron and rapidity gap requirements. The cross-sections, not unfolded for detector response, are compared to results from Pythia Monte Carlo simulations re-weighted to match a photon spectrum obtained from the STARlight model. Qualitative agreement between data and these simulations is observed over a broad kinematic range suggesting that using these collisions to measure nuclear parton distributions is experimentally realisable

    Search for heavy charged long-lived particles in proton-proton collisions at root s=13 TeV using an ionisation measurement with the ATLAS detector

    Get PDF
    This Letter presents a search for heavy charged long-lived particles produced in proton–proton collisions at √s = 13 TeV at the LHC using a data sample corresponding to an integrated luminosity of 36.1 fb−1 collected by the ATLAS experiment in 2015 and 2016. These particles are expected to travel with a velocity significantly below the speed of light, and therefore have a specific ionisation higher than any high-momentum Standard Model particle of unit charge. The pixel subsystem of the ATLAS detector is used in this search to measure the ionisation energy loss of all reconstructed charged particles which traverse the pixel detector. Results are interpreted assuming the pair production of R-hadrons as composite colourless states of a long-lived gluino and Standard Model partons. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross-sections and gluino masses are set, assuming the gluino always decays to two quarks and a 100 GeV stable neutralino. R-hadrons with lifetimes above 1.0 ns are excluded at the 95% confidence level, with lower limits on the gluino mass ranging between 1290 GeV and 2060 GeV. In the case of stable R-hadrons, the lower limit on the gluino mass at the 95% confidence level is 1890 GeV
    corecore