1,404 research outputs found

    The protein corona determines the cytotoxicity of nanodiamonds: implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery

    Get PDF
    The use of nanodiamonds for biomedical and consumer applications is growing rapidly. As their use becomes more widespread, so too do concerns around their cytotoxicity. The cytotoxicity of nanodiamonds correlates with their cellular internalisation and circulation time in the body. Both internalisation and circulation time are influenced by the formation of a protein corona on the nanodiamond surface. However, a precise understanding of both how the corona forms and evolves and its influence on cytotoxicity is lacking. Here, we investigated protein corona formation and evolution in response to two classes of nanodiamonds, pristine and aminated, and two types of proteins, bovine serum albumin and fibronectin. Specifically, we found that a corona made of bovine serum albumin (BSA), which represents the most abundant protein in blood plasma, reduced nanodiamond agglomeration. Fibronectin (FN9-10), the second most abundant protein found in the plasma, exhibited a significantly higher nanodiamond binding affinity than BSA, irrespective of the nanodiamond surface charge. Finally, nanodiamonds with a BSA corona displayed less cytotoxicity towards nonphagocytic liver cells. However, regardless of the type of corona (FN9-10 or BSA), both classes of nanodiamonds induced substantial phagocytic cell death. Our results emphasise that a precise understanding of the corona composition is fundamental to determining the fate of nanoparticles in the body

    FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering

    Get PDF
    Plants use day-length information to coordinate flowering time with the appropriate season to maximize reproduction. In Arabidopsis, the long-day specific expression of CONSTANS (CO) protein is crucial for flowering induction. Although light signaling regulates CO protein stability, the mechanism by which CO is stabilized in the long-day afternoon has remained elusive. Here we demonstrate that FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) protein stabilizes CO protein in the afternoon in long days. FKF1 interacts with CO through its LOV domain, and blue light enhances this interaction. In addition, FKF1 simultaneously removes CYCLING DOF FACTOR 1 (CDF1) that represses CO and FLOWERING LOCUS T (FT) transcription. Together with CO transcriptional regulation, FKF1 protein controls robust FT mRNA induction through multiple feedforward mechanisms that accurately control flowering timing

    Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations

    Get PDF
    The formation of two-dimensional electron gases (2DEGs) at complex oxide interfaces is directly influenced by the oxide electronic properties. We investigated how local electron correlations control the 2DEG by inserting a single atomic layer of a rare-earth oxide (RO) [(R is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), or yttrium (Y)] into an epitaxial strontium titanate oxide (SrTiO3) matrix using pulsed-laser deposition with atomic layer control. We find that structures with La, Pr, and Nd ions result in conducting 2DEGs at the inserted layer, whereas the structures with Sm or Y ions are insulating. Our local spectroscopic and theoretical results indicate that the interfacial conductivity is dependent on electronic correlations that decay spatially into the SrTiO3 matrix. Such correlation effects can lead to new functionalities in designed heterostructures

    Defining the optimal dose of radiation in leukemic patients with extramedullary lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of the clinical response of extramedullary lesions in leukemic patients treated with radiation therapy (RT) and defining the optimal dose of radiation.</p> <p>Methods</p> <p>Forty-two extramedullary lesions found in 24 leukemic patients treated with RT were reviewed. The radiation was delivered usually 2 Gy/day, up to a median of 20 Gy (range: 18.0-40.8). The clinical response and symptom palliation effect were analyzed. The factors affecting the response were also included in the analysis.</p> <p>Results</p> <p>After a median time of 7.9 weeks, the overall response rate was 76.2%. A complete response (CR) was achieved in 35.7%, a partial response in 40.5%. The symptom was relieved in 85.7% sites. The overall response rate was better in patients whose initial tumor size was smaller than 10 cm<sup>2 </sup>(<it>p = 0.010</it>) or who were treated with more than 25 Gy (<it>p = 0.031</it>). The overall CR rate was also higher in those who had smaller tumors (smaller than 6 cm or 30 cm<sup>2</sup>) (<it>p = 0.015)</it>, or when the tumor was located in soft tissue (<it>p = 0.029</it>).</p> <p>Conclusions</p> <p>Extramedullary lesions in leukemic patients can be successfully treated with RT. The tumor response rate was excellent and symptom relief was achieved in almost all patients. There was a better response to treatment when the tumor was small or it was located in soft tissue. Although, there was no definite correlation between volume reduction and total dose, it seems that higher total dose more of than 25 Gy is needed for better response.</p

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications

    Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations

    Get PDF
    Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), are present in most gliomas and secondary glioblastomas, but are rare in other neoplasms. IDH1/2 mutations are heterozygous, and affect a single arginine residue. Recently, IDH1 mutations were identified in 8% of acute myelogenous leukemia (AML) patients. A glioma study revealed that IDH1 mutations cause a gain-of-function, resulting in the production and accumulation of 2-hydroxyglutarate (2-HG). Genotyping of 145 AML biopsies identified 11 IDH1 R132 mutant samples. Liquid chromatography-mass spectrometry metabolite screening revealed increased 2-HG levels in IDH1 R132 mutant cells and sera, and uncovered two IDH2 R172K mutations. IDH1/2 mutations were associated with normal karyotypes. Recombinant IDH1 R132C and IDH2 R172K proteins catalyze the novel nicotinamide adenine dinucleotide phosphate (NADPH)–dependent reduction of α-ketoglutarate (α-KG) to 2-HG. The IDH1 R132C mutation commonly found in AML reduces the affinity for isocitrate, and increases the affinity for NADPH and α-KG. This prevents the oxidative decarboxylation of isocitrate to α-KG, and facilitates the conversion of α-KG to 2-HG. IDH1/2 mutations confer an enzymatic gain of function that dramatically increases 2-HG in AML. This provides an explanation for the heterozygous acquisition of these mutations during tumorigenesis. 2-HG is a tractable metabolic biomarker of mutant IDH1/2 enzyme activity

    Genome-Wide Binding Map of the HIV-1 Tat Protein to the Human Genome

    Get PDF
    The HIV-1 Trans-Activator of Transcription (Tat) protein binds to multiple host cellular factors and greatly enhances the level of transcription of the HIV genome. While Tat's control of viral transcription is well-studied, much less is known about the interaction of Tat with the human genome. Here, we report the genome-wide binding map of Tat to the human genome in Jurkat T cells using chromatin immunoprecipitation combined with next-generation sequencing. Surprisingly, we found that ∼53% of the Tat target regions are within DNA repeat elements, greater than half of which are Alu sequences. The remaining target regions are located in introns and distal intergenic regions; only ∼7% of Tat-bound regions are near transcription start sites (TSS) at gene promoters. Interestingly, Tat binds to promoters of genes that, in Jurkat cells, are bound by the ETS1 transcription factor, the CBP histone acetyltransferase and/or are enriched for histone H3 lysine 4 tri-methylation (H3K4me3) and H3K27me3. Tat binding is associated with genes enriched with functions in T cell biology and immune response. Our data reveal that Tat's interaction with the host genome is more extensive than previously thought, with potentially important implications for the viral life cycle

    Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV

    Get PDF
    The production of b jets in association with a Z/gamma* boson is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV and recorded by the CMS detector. The inclusive cross section for Z/gamma* + b-jet production is measured in a sample corresponding to an integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross section with Z/gamma* to ll (where ll = ee or mu mu) for events with the invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.) +(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also studied and found to be in agreement with the predictions made by the MadGraph event generator with the parton shower and the hadronisation performed by PYTHIA.Comment: Submitted to the Journal of High Energy Physic
    corecore