3,994 research outputs found

    Characterization of Low Frequency Auditory Filters

    Get PDF
    The purpose of this study is to characterize auditory filters at low frequencies, defined as below about 100 Hz. Three experiments were designed and executed. They were conducted in the Exterior Effects Room at the NASA Langley Research Center, a psychoacoustic facility designed for presentation of aircraft flyover sounds to groups of test subjects. The first experiment measured 36 subjects hearing threshold for pure tones (at 25, 31.5, 40, 50, 63 and 80 Hz) in quiet conditions. The subjects, male and female, had a wide age range. This experiment allowed the performance of the test facility to be assessed and also provided screened test subjects for participation in subsequent experiments. The second and third experiments used 20 and 10 test subjects, respectively, and measured psychophysical tuning curves (PTCs) that describe auditory filters with center frequencies of approximately 63 and 50 Hz. The latter is assumed to be the lowest (bottom) auditory filter; thus, sounds at frequencies below about 50 Hz are perceived via the lower skirt of this lowest filter. All experiments used an adaptive, three-alternative forced-choice test procedure using either variable level tones or variable level, narrowband noise maskers. Measured PTCs were found to be very similar to other recently published data, both in terms of mean values and intersubject variation, despite different experimental protocols, different test facilities, and a wide range in subjects age

    Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins

    Get PDF
    AbstractThe architecture of the pore-region of a voltage-gated K+ channel, Kv1.3, was probed using four high affinity scorpion toxins as molecular calipers. We established the structural relatedness of these toxins by solving the structures of kaliotoxin and margatoxin and comparing them with the published structure of charybdotoxin; a homology model of noxiustoxin was then developed. Complementary mutagenesis of Kv1.3 and these toxins, combined with electrostatic compliance and thermodynamic mutant cycle analyses, allowed us to identify multiple toxin-challel interactions. Our analyses reveals the existence of a shallow vestibule at the external entrance to the pore. This vestibule is ∼28−32A˚wide at its outer margin, ∼28−34A˚wide at its base, and ∼4−8A˚deep. The pore is 9–14A˚wide at its external entrance and tapers to a width of 4–5A˚at a depth of ∼5−7A˚from the vestibule. This structural information should directly aid in developing topological models of the pores of related ion channels and facilitate therapeutic drug design

    Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures

    Full text link
    The influence of AlGaN and GaN cap layer thickness on Hall sheet carrier density and mobility was investigated for Al0.32Ga0.68N/GaN and GaN/Al0.32Ga0.68N/GaN heterostructures deposited on sapphire substrates. The sheet carrier density was found to increase and saturate with the AlGaN layer thickness, while for the GaN-capped structures it decreased and saturated with the GaN cap layer thickness. A relatively close fit was achieved between the measured data and two-dimensional electron gas densities predicted from simulations of the band diagrams. The simulations also indicated the presence of a two-dimensional hole gas at the upper interface of GaN/AlGaN/GaN structures with sufficiently thick GaN cap layers. A surface Fermi-level pinning position of 1.7 eV for AlGaN and 0.9-1.0 eV for GaN, and an interface polarization charge density of 1.6x10(13)-1.7x10(13) cm(-2), were extracted from the simulations. (C) 2003 American Institute of Physics

    Innovations and advances in instrumentation at the W. M. Keck Observatory

    Get PDF
    Since the start of operations in 1993, the twin 10 meter W. M. Keck Observatory telescopes have continued to maximize their scientific impact and to produce transformative discoveries that keep the observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships with Caltech and UC instrument development teams. The observatory adapts and responds to the observers’ evolving needs as defined in the observatory’s strategic plan, periodically refreshed in collaboration with the science community. This paper summarizes the performance of recently commissioned infrastructure projects, technology upgrades, and new additions to the suite of instrumentation at the observatory. We will also provide a status of projects currently in the design or development phase, and since we need to keep our eye on the future, we mention projects in exploratory phases that originate from our strategic plan. Recently commissioned projects include telescope control system upgrades, OSIRIS spectrometer and imager upgrades, and deployments of the Keck Cosmic Web Imager (KCWI), the Near-Infrared Echellette Spectrometer (NIRES), and the Keck I Deployable Tertiary Mirror (KIDM3). Under development are upgrades to the NIRSPEC instrument and adaptive optics (AO) system. Major instrumentation in design phases include the Keck Cosmic Reionization Mapper and the Keck Planet Finder. Future instrumentation studies and proposals underway include a Ground Layer Adaptive Optics system, NIRC2 upgrades, the energy sensitive instrument KRAKENS, an integral field spectrograph LIGER, and a laser tomography AO upgrade. Last, we briefly discuss recovering MOSFIRE and its return to science operations

    The AIROPA software package - Milestones for testing general relativity in the strong gravity regime with AO

    Get PDF
    General relativity can be tested in the strong gravity regime by monitoring stars orbiting the supermassive black hole at the Galactic Center with adaptive optics. However, the limiting source of uncertainty is the spatial PSF variability due to atmospheric anisoplanatism and instrumental aberrations. The Galactic Center Group at UCLA has completed a project developing algorithms to predict PSF variability for Keck AO images. We have created a new software package (AIROPA), based on modified versions of StarFinder and Arroyo, that takes atmospheric turbulence profiles, instrumental aberration maps, and images as inputs and delivers improved photometry and astrometry on crowded fields. This software package will be made publicly available soon

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
    • …
    corecore