524 research outputs found

    European integration and the social science of EU studies: the disciplinary politics of a subfield

    Get PDF
    This article takes the 50th anniversary of the Treaty of Rome as an opportunity to reflect upon half a century of academic discourse about the EU and its antecedents. In particular, it illuminates the theoretical analysis of European integration that has developed within political science and international studies broadly defined. It asks whether it is appropriate to map, as might be tempting, the intellectual 'progress' of the field of study against the empirical evolution of its object (European integration/the EU). The argument to be presented here is that while we can, to some extent, comprehend the evolution of academic thinking about the EU as a reflex to critical shifts in the 'real world' of European integration ('externalist' drivers), it is also necessary to understand 'internalist' drivers of theoretical discourse on European integration/the EU. The article contemplates two such 'internalist' components that have shaped and continue to shape the course of EU studies: scholarly contingency (the fact that scholarship does not proceed with free agency, but is bound by various conditions) and disciplinary politics (the idea that the course of academic work is governed by power games and that there are likely significant disagreements about best practice and progress in a field). In terms of EU studies, the thrust of disciplinary politics tends towards an opposition between 'mainstreaming' and 'pluralist versions' of the political science of EU studies. The final section explores how, in the face of emerging monistic claims about propriety in the field, an effective pluralist political science of the EU might be enhanced

    Root Hair Mutations Displace the Barley Rhizosphere Microbiota

    Get PDF
    The rhizosphere, the thin layer of soil surrounding and influenced by plant roots, defines a distinct and selective microbial habitat compared to unplanted soil. The microbial communities inhabiting the rhizosphere, the rhizosphere microbiota, engage in interactions with their host plants which span from parasitism to mutualism. Therefore, the rhizosphere microbiota emerges as one of the determinants of yield potential in crops. Studies conducted with different plant species have unequivocally pointed to the host plant as a driver of the microbiota thriving at the root–soil interface. Thus far, the host genetic traits shaping the rhizosphere microbiota are not completely understood. As root hairs play a critical role in resource exchanges between plants and the rhizosphere, we hypothesized that they can act as a determinant of the microbiota thriving at the root–soil interface. To test this hypothesis, we took advantage of barley (Hordeum vulgare) mutant lines contrasting for their root hair characteristics. Plants were grown in two agricultural soils, differentiating in their organic matter contents, under controlled environmental conditions. At early stem elongation rhizosphere specimens were collected and subjected to high-resolution 16S rRNA gene profiling. Our data revealed that the barley rhizosphere microbiota is largely dominated by members of the phyla Bacteroidetes and Proteobacteria, regardless of the soil type and the root hair characteristics of the host plant. Conversely, ecological indices calculated using operational taxonomic units (OTUs) presence, abundance, and phylogeny revealed a significant impact of root hair mutations on the composition of the rhizosphere microbiota. In particular, our data indicate that mutant plants host a reduced-complexity community compared to wild-type genotypes and unplanted soil controls. Congruently, the host genotype explained up to 18% of the variation in ecological distances computed for the rhizosphere samples. Importantly, this effect is manifested in a soil-dependent manner. A closer inspection of the sequencing profiles revealed that the root hair-dependent diversification of the microbiota is supported by a taxonomically narrow group of bacteria, with a bias for members of the orders Actinomycetales, Burkholderiales, Rhizobiales, Sphingomonadales, and Xanthomonadales. Taken together, our results indicate that the presence and function of root hairs are a determinant of the bacterial community thriving in the rhizosphere and their perturbations can markedly impact on the recruitment of individual members of the microbiota

    Body mass index and blood pressure in a semi-urban community in Ota, Nigeria

    Get PDF
    This study was designed to establish the relationship between body mass index (BMI) and blood pressure (BP) in an increasingly industrialised town in Nigeria due to the rising prevalence of hypertension in non-industrialised countries. Factors associated with BMI and BP levels were determined in three hundred adult male and female subjects in Ota community of Ogun State, Nigeria. The levels of the overweight among the male and female subjects were 53.03 % and 47.37 % respectively. The levels of hypertensive male and female subjects were 40.91 % and 35.34 % respectively. The overweight and underweight among the hypertensive male were 54.29 % and 0 % respectively; while the overweight and underweight among the hypertensive female were 42.86 % and 28.57 % respectively. Hypertension among the overweight, and hypotension among the underweight, are major health concern in Ota that requires intensive medical care

    Linking microbial diversity and functionality of Arctic glacial surface habitats

    Get PDF
    Distinct microbial habitats on glacial surfaces are dominated by snow and ice algae, which are the critical players and the dominant primary colonisers and net producers during the melt season. Here we have for the first time evaluated the role of these algae in association with the full microbial community composition (i.e., algae, bacteria, archaea) in distinct surface habitats and on twelve glaciers and permanent snow fields in Svalbard and Arctic Sweden. We cross-correlated these data with the analyses of specific metabolites such as fatty acids and pigments, and a full suite of potential critical physico-chemical parameters including major and minor nutrients, and trace metals. We show that correlations between single algal species, metabolites, and specific geochemical parameters can be used to unravel mixed metabolic signals in complex communities, further assign them to single species and infer their functionality. The data also clearly show that the production of metabolites in snow and ice algae is driven mainly by nitrogen and less so by phosphorus limitation. This is especially important for the synthesis of secondary carotenoids, which cause a darkening of glacial surfaces leading to a decrease in surface albedo and eventually higher melting rates. This article is protected by copyright. All rights reserved

    Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions

    Get PDF
    High-throughput molecular technologies can profile microbial communities at high resolution even in complex environments like the intestinal microbiota. Recent improvements in next-generation sequencing technologies allow for even finer resolution. We compared phylogenetic profiling of both longer (454 Titanium) sequence reads with shorter, but more numerous, paired-end reads (Illumina). For both approaches, we targeted six tandem combinations of 16S rRNA gene variable regions, in microbial DNA extracted from a human faecal sample, in order to investigate their limitations and potentials. In silico evaluations predicted that the V3/V4 and V4/V5 regions would provide the highest classification accuracies for both technologies. However, experimental sequencing of the V3/V4 region revealed significant amplification bias compared to the other regions, emphasising the necessity for experimental validation of primer pairs. The latest developments of 454 and Illumina technologies offered higher resolution compared to their previous versions, and showed relative consistency with each other. However, the majority of the Illumina reads could not be classified down to genus level due to their shorter length and higher error rates beyond 60 nt. Nonetheless, with improved quality and longer reads, the far greater coverage of Illumina promises unparalleled insights into highly diverse and complex environments such as the human gut

    Rhizosphere microbiomes of european seagrasses are selected by the plant, but are not species specific

    Get PDF
    Seagrasses are marine flowering plants growing in soft-body sediments of intertidal and shallow sub-tidal zones. They play an important role in coastal ecosystems by stabilizing sediments, providing food and shelter for animals, and recycling nutrients. Like other plants, seagrasses live intimately with both beneficial and unfavorable microorganisms. Although much is known about the microbiomes of terrestrial plants, little is known about the microbiomes of seagrasses. Here we present the results of a detailed study on the rhizosphere microbiome of seagrass species across the North-eastern Atlantic Ocean: Zostera marina, Zostera noltii, and Cymodocea nodosa. High-resolution amplicon sequencing of 16S rRNA genes showed that the rhizobiomes were significantly different from the bacterial communities of surrounding bulk sediment and seawater. Although we found no significant differences between the rhizobiomes of different seagrass species within the same region, those of seagrasses in different geographical locations differed strongly. These results strongly suggest that the seagrass rhizobiomes are shaped by plant metabolism, but not coevolved with their host. The core rhizobiome of seagrasses includes mostly bacteria involved in the sulfur cycle, thereby highlighting the importance of sulfur-related processes in seagrass ecosystems
    corecore