38 research outputs found

    The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit

    Get PDF
    Altres ajuts: MB was supported by the Polish National Science Centre grant Sonatina No. 2017/24/C/NZ8/00151. JSz was supported by the Foundation for Polish Science (FNP) scholarship "Start". MFM is a postdoctoral fellow of the Research Foundation - Flanders (FWO)Many plant species present inter-annual cycles of seed production (mast seeding), with synchronized high seed production across populations in some years. Weather is believed to be centrally involved in triggering masting. The links between meteorological conditions and seeding are well-recognized for some species, but in others consistent correlates have not been found. We used a spatially extensive data set of fruit production to test the hypothesis that the influence of weather on seed production is conditioned by local climate and that this influence varies between species with different life history traits. We used two model species. European beech (Fagus sylvatica) that is a flowering masting species, i.e. seed production is determined by variable flower production, and sessile oak (Quercus petrea) that is a fruit-maturation masting species, i.e. seed production is determined by variable ripening of more constant flower production. We predicted that climate should strongly modulate the relationship between meteorological cue and fruit production in Q. petrea, while the relationship should be uniform in F. sylvatica. The influence of meteorological cue on reproduction in fruiting masting species should be strongly conditioned by local climate because the strength of environmental constraint that modulates the success of flower-to-fruit transition is likely to vary with local climatic conditions. In accordance, the meteorological cuing was consistent in F. sylvatica. In contrast, in Q. petraea the relationship between spring temperature and seed production varied among sites and was stronger in populations at colder sites. The clear difference in meteorological conditioning of seed production between the two studied species suggests the responses of masting plants to weather can be potentially systematized according to their masting habit: i.e. fruiting or flowering

    Environmental variation drives continental-scale synchrony of European beech reproduction.

    Get PDF
    Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent. Masting in beech shows distance-decay, but significant synchrony is maintained at spatial scales of up to 1,500 km. The spatial synchrony of the weather cues that drive interannual variation in reproduction also explains the regional spatial synchrony of masting. Proximity played no apparent role in influencing beech masting synchrony after controlling for synchrony in environmental variation. Synchrony of beech reproduction shows a clear biogeographical pattern, decreasing from the northwest to southeast Europe. Synchrony networks for weather cues resemble networks for beech masting, indicating that the geographical structure of weather synchrony underlies the biogeography of masting synchrony. Our results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in beech seed production at regional scales. The geographical patterns of regional synchronization of masting have implications for regional forest production, gene flow, carbon cycling, disease dynamics, biodiversity, and conservation

    Summer solstice orchestrates the subcontinental-scale synchrony of mast seeding

    Get PDF
    High interannual variation in seed production in perennial plants can be synchronized at subcontinental scales with wide consequences for ecosystem functioning, but how such synchrony is generated is unclear1-3. We investigated the factors contributing to masting synchrony in European beech (Fagus sylvatica), which extends to a geographic range of 2,000 km. Maximizing masting synchrony via spatial weather coordination, known as the Moran effect, requires a simultaneous response to weather conditions across distant populations. A celestial cue that occurs simultaneously across the entire hemisphere is the longest day (the summer solstice). We show that European beech abruptly opens its temperature-sensing window on the solstice, and hence widely separated populations all start responding to weather signals in the same week. This celestial 'starting gun' generates ecological events with high spatial synchrony across the continent

    Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals

    Get PDF
    Background and Aims In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting. Methods We investigated covariation of plant size and fecundity with individual-plant-level masting patterns and seed predation in 12 mast-seeding species: Pinus pinea, Astragalus scaphoides, Sorbus aucuparia, Quercus ilex, Q. humilis, Q. rubra, Q. alba, Q. montana, Chionochloa pallens, C. macra, Celmisia lyallii and Phormium tenax. Key Results Fecundity was non-linearly related to masting patterns. Small and unproductive plants frequently failed to produce any seeds, which elevated their annual variation and decreased synchrony. Above a low fecundity threshold, plants had similar variability and synchrony, regardless of their size and productivity. Conclusions Our study shows that within-species variation in masting patterns is correlated with variation in fecundity, which in turn is related to plant size. Low synchrony of low-fertility plants shows that the failure years were idiosyncratic to each small plant, which in turn implies that the small plants fail to reproduce because of plant-specific factors (e.g. internal resource limits). Thus, the behaviour of these sub-producers is apparently the result of trade-offs in resource allocation and environmental limits with which the small plants cannot cope. Plant size and especially fecundity and propensity for mast failure years play a major role in determining the variability and synchrony of reproduction in plants

    Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals

    Get PDF
    Centro de Investigación Forestal (CIFOR)In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting.The study was supported by the Polish National Science Centre (2017/24/C/NZ8/00151), the Polish State Committee for Scientific Research (6 P04G 045 21, 3 P04G 111 25), the Polish Ministry of Science and Higher Education (N304 362938), the US National Science Foundation (DEB 165511, DEB-02-40963, DEB-05-15756, DEB-10-20889, DBI-9978807, DEB-0642594, DEB-1556707), the Wilkes University Fenner Endowment, USDA/NIFA grant 2017-03807, the Hatch Act (225165) through the USDA National Institute of Food and Agriculture, PROPINEA (CC-16-095, AGL-2017-83828-C2), FORASSEMBLY (CGL2015-70558-P), BEEMED (SGR913) and a Marsden Fund grant (UOC1401).Peer reviewed9 Pág

    Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus

    Get PDF
    Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory

    Relationship between the Clinical Frailty Scale and short-term mortality in patients ≥ 80 years old acutely admitted to the ICU: a prospective cohort study.

    Get PDF
    BACKGROUND: The Clinical Frailty Scale (CFS) is frequently used to measure frailty in critically ill adults. There is wide variation in the approach to analysing the relationship between the CFS score and mortality after admission to the ICU. This study aimed to evaluate the influence of modelling approach on the association between the CFS score and short-term mortality and quantify the prognostic value of frailty in this context. METHODS: We analysed data from two multicentre prospective cohort studies which enrolled intensive care unit patients ≥ 80 years old in 26 countries. The primary outcome was mortality within 30-days from admission to the ICU. Logistic regression models for both ICU and 30-day mortality included the CFS score as either a categorical, continuous or dichotomous variable and were adjusted for patient's age, sex, reason for admission to the ICU, and admission Sequential Organ Failure Assessment score. RESULTS: The median age in the sample of 7487 consecutive patients was 84 years (IQR 81-87). The highest fraction of new prognostic information from frailty in the context of 30-day mortality was observed when the CFS score was treated as either a categorical variable using all original levels of frailty or a nonlinear continuous variable and was equal to 9% using these modelling approaches (p < 0.001). The relationship between the CFS score and mortality was nonlinear (p < 0.01). CONCLUSION: Knowledge about a patient's frailty status adds a substantial amount of new prognostic information at the moment of admission to the ICU. Arbitrary simplification of the CFS score into fewer groups than originally intended leads to a loss of information and should be avoided. Trial registration NCT03134807 (VIP1), NCT03370692 (VIP2)

    Mechanisms of habitat selection in the wood warbler Phylloscopus sibilatrix

    No full text
    Wydział BiologiiCzasowo-przestrzenna heterogeniczność środowiska prowadzi do presji selekcyjnej faworyzującej zachowania pozwalające osobnikom wybierać optymalne miejsca lęgowe, tj. do ewolucji procesu wybiórczości środowiskowej. Wiedza o tym, w jaki sposób różne wskazówki wpływają na decyzje osobników o osiedleniu się jest niezbędna dla pełnego zrozumieniu tego procesu. Celem pracy było zbadanie wybranych mechanizmów wybiórczości środowiskowej u drobnych ptaków śpiewających, wykorzystując świstunkę leśną (Phylloscopus sibilatrix) jako gatunek modelowy. W szczególności, skupiono się na mechanizmach unikania presji drapieżniczej oraz interakcjach wewnątrzgatunkowych. W badaniach wykorzystano zarówno podejście korelacyjne (na podstawie danych z Monitoringu Pospolitych Ptaków Lęgowych), eksperymentalne (eksperyment typu playback), oraz teoretyczne (modelowanie wieloagentowe). Otrzymane wyniki sugerują, że świstunki wykazują złożoną, zależną od ryzyka strategię unikania zagrożenia ze strony drapieżników w procesie wybiórczości środowiskowej. Eksperymentalnie wykazano również, że przy podejmowaniu decyzji o osiedleniu świstunki selektywnie wykorzystują wewnątrzgatunkową informację socjalną, biorąc pod uwagę jakość obserwowanych osobników. Ponadto, wyniki modelowania wieloagentowego sugerują, że koszty i zyski korzystania z informacji socjalnej mogą zależeć od struktury zespołu drapieżników.Spatio-temporal heterogeneity of the environment leads to selective pressures favoring behaviors allowing individuals to choose optimal breeding habitats, that is, the evolution of habitat selection behavior. The knowledge about how birds use different cues for settlement decisions is necessary to understand complex habitat selection strategies. The aim of this thesis was to study the selected mechanisms of breeding habitat selection in songbirds, using wood warbler (Phylloscopus sibilatrix) as a model species. In particular, I focused on the effects of predation risk and intraspecific interactions on wood warbler settlement decisions. The results were grounded on correlative (based on data from Common Breeding Bird Monitoring Scheme), experimental (playback experiment), and theoretical approach (agent-based modeling). The results suggest that wood warblers exhibit a complex, risk-sensitive anti-predator behavior in their habitat selection process. I found also experimental evidence for the selective us of intraspecific social information in breeding-site selection decisions by wood warblers. Moreover, the results of agent-based modeling suggest that costs and benefits of social information use may depend on the structure of the local predator community

    Predation-related costs and benefits of conspecific attraction in songbirds--an agent-based approach.

    No full text
    Songbirds that follow a conspecific attraction strategy in the habitat selection process prefer to settle in habitat patches already occupied by other individuals. This largely affects the patterns of their spatio-temporal distribution and leads to clustered breeding. Although making informed settlement decisions is expected to be beneficial for individuals, such territory clusters may potentially provide additional fitness benefits (e.g., through the dilution effect) or costs (e.g., possibly facilitating nest localization if predators respond functionally to prey distribution). Thus, we hypothesized that the fitness consequences of following a conspecific attraction strategy may largely depend on the composition of the predator community. We developed an agent-based model in which we simulated the settling behavior of birds that use a conspecific attraction strategy and breed in a multi-predator landscape with predators that exhibited different foraging strategies. Moreover, we investigated whether Bayesian updating of prior settlement decisions according to the perceived predation risk may improve the fitness of birds that rely on conspecific cues. Our results provide evidence that the fitness consequences of conspecific attraction are predation-related. We found that in landscapes dominated by predators able to respond functionally to prey distribution, clustered breeding led to fitness costs. However, this cost could be reduced if birds performed Bayesian updating of prior settlement decisions and perceived nesting with too many neighbors as a threat. Our results did not support the hypothesis that in landscapes dominated by incidental predators, clustered breeding as a byproduct of conspecific attraction provides fitness benefits through the dilution effect. We suggest that this may be due to the spatial scale of songbirds' aggregative behavior. In general, we provide evidence that when considering the fitness consequences of conspecific attraction for songbirds, one should expect a trade-off between the benefits of making informed decisions and the costs of clustering
    corecore