290 research outputs found

    GRB optical afterglow and redshift selection effects: The learning curve effect at work

    Full text link
    We show how the observed gamma ray burst (GRB) optical afterglow (OA) and redshift distributions are changing in time from selection effects. For a subset of {\it Swift} triggered long duration bursts, we show that the mean time taken to acquire spectroscopic redshifts for a GRB OA has evolved to shorter times. We identify a strong correlation between the mean time taken to acquire a spectroscopic redshift and the measured redshift. This correlation reveals that shorter response times favour smaller redshift bursts. This is compelling evidence for a selection effect that biases longer response times with relatively brighter high redshift bursts. Conversely, for shorter response times, optically fainter bursts that are relatively closer are bright enough for spectroscopic redshifts to be acquired. This selection effect could explain why the average redshift, ≈2.8\approx2.8 measured in 2005, has evolved to ≈2\approx2, by mid 2008. Understanding these selection effects provides an important tool for separating the contributions of intrinsically faint bursts, those obscured by host galaxy dust and bursts not seen in the optical because their OAs are observed at late times. The study highlights the importance of rapid response telescopes capable of spectroscopy, and identifies a new redshift selection effect that has not been considered previously, namely the response time to measure the redshift.Comment: 5 pages, 4 figures, MNRAS Letter (accepted

    GRBs as Probes of Massive Stars Near and Far

    Full text link
    Long-duration gamma-ray bursts are the manifestations of massive stellar death. Due to the immense energy release they are detectable from most of the observable universe. In this way they allow us to study the deaths of single (or binary) massive stars possibly throughout the full timespan massive stars have existed in the Universe. GRBs provide a means to infer information about the environments and typical galaxies in which massive stars are formed. Two main obstacles remain to be crossed before the full potential of GRBs as probes of massive stars can be harvested: i) we need to build more complete and well understood samples in order not to be fooled by biases, and ii) we need to understand to which extent GRBs may be intrinsically biased in the sense that they are only formed by a limited subset of massive stars defined by most likely a restricted metallicity interval. We describe the status of an ongoing effort to build a more complete sample of long-duration GRBs with measured redshifts. Already now we can conclude that the environments of GRB progenitors are very diverse with metallicities ranging from solar to a hundredth solar and extinction ranging from none to A_V>5 mag. We have also identified a sightline with significant escape of Lyman continuum photons and another with a clear 2175AA extinction bump.Comment: Invited review - in "Massive Stars as Cosmic Engines", IAU Symp. 250 (Kauai), ed. F. Bresolin, P. A. Crowther, and J. Puls (Cambridge University Press), p. 443-456. Typos and refs correcte

    Discovery of the Very Red Near-Infrared and Optical Afterglow of the Short-Duration GRB 070724A

    Full text link
    [Abridged] We report the discovery of the near-infrared and optical afterglow of the short-duration gamma-ray burst GRB070724A. The afterglow is detected in i,J,H,K observations starting 2.3 hr after the burst with K=19.59+/-0.16 mag and i=23.79+/-0.07 mag, but is absent in images obtained 1.3 years later. Fading is also detected in the K-band between 2.8 and 3.7 hr at a 4-sigma significance level. The optical/near-IR spectral index, beta_{O,NIR}=-2, is much redder than expected in the standard afterglow model, pointing to either significant dust extinction, A_{V,host}~2 mag, or a non-afterglow origin for the near-IR emission. The case for extinction is supported by a shallow optical to X-ray spectral index, consistent with the definition for ``dark bursts'', and a normal near-IR to X-ray spectral index. Moreover, a comparison to the optical discovery magnitudes of all short GRBs with optical afterglows indicates that the near-IR counterpart of GRB070724A is one of the brightest to date, while its observed optical emission is one of the faintest. In the context of a non-afterglow origin, the near-IR emission may be dominated by a mini-supernova, leading to an estimated ejected mass of M~10^-4 Msun and a radioactive energy release efficiency of f~0.005 (for v~0.3c). However, the mini-SN model predicts a spectral peak in the UV rather than near-IR, suggesting that this is either not the correct interpretation or that the mini-SN models need to be revised. Finally, the afterglow coincides with a star forming galaxy at z=0.457, previously identified as the host based on its coincidence with the X-ray afterglow position (~2" radius). Our discovery of the optical/near-IR afterglow makes this association secure.Comment: Submitted to ApJ; 10 pages, 5 figures, 1 tabl

    Short gamma-ray bursts from SGR giant flares and neutron star mergers: two populations are better than one

    Get PDF
    ‘The definitive version is available at www.blackwell-synergy.com.’ Copyright Blackwell Publishing. DOI: 10.1111/j.1365-2966.2009.14610.xThere is increasing evidence of a local population of short duration gamma-ray bursts (sGRB), but it remains to be seen whether this is a separate population to higher redshift bursts. Here we choose plausible luminosity functions (LFs) for both neutron star binary mergers and giant flares from soft gamma repeaters (SGR), and combined with theoretical and observed Galactic intrinsic rates we examine whether a single progenitor model can reproduce both the overall Burst and Transient Source Experiment (BATSE) sGRB number counts and a local population, or whether a dual progenitor population is required. Though there are large uncertainties in the intrinsic rates, we find that at least a bimodal LF consisting of lower and higher luminosity populations is required to reproduce both the overall BATSE sGRB number counts and a local burst distribution. Furthermore, the best-fitting parameters of the lower luminosity population agree well with the known properties of SGR giant flares, and the predicted numbers are sufficient to account for previous estimates of the local sGRB population.Peer reviewe

    Where are the missing gamma ray burst redshifts?

    Full text link
    In the redshift range z = 0-1, the gamma ray burst (GRB) redshift distribution should increase rapidly because of increasing differential volume sizes and strong evolution in the star formation rate. This feature is not observed in the Swift redshift distribution and to account for this discrepancy, a dominant bias, independent of the Swift sensitivity, is required. Furthermore, despite rapid localization, about 40-50% of Swift and pre-Swift GRBs do not have a measured redshift. We employ a heuristic technique to extract this redshift bias using 66 GRBs localized by Swift with redshifts determined from absorption or emission spectroscopy. For the Swift and HETE+BeppoSAX redshift distributions, the best model fit to the bias in z < 1 implies that if GRB rate evolution follows the SFR, the bias cancels this rate increase. We find that the same bias is affecting both Swift and HETE+BeppoSAX measurements similarly in z < 1. Using a bias model constrained at a 98% KS probability, we find that 72% of GRBs in z < 2 will not have measurable redshifts and about 55% in z > 2. To achieve this high KS probability requires increasing the GRB rate density in small z compared to the high-z rate. This provides further evidence for a low-luminosity population of GRBs that are observed in only a small volume because of their faintness.Comment: 5 pages, submitted to MNRA

    The dark GRB080207 in an extremely red host and the implications for GRBs in highly obscured environments

    Get PDF
    [Abridged] We present comprehensive X-ray, optical, near- and mid-infrared, and sub-mm observations of GRB 080207 and its host galaxy. The afterglow was undetected in the optical and near-IR, implying an optical to X-ray index <0.3, identifying GRB 080207 as a dark burst. Swift X-ray observations show extreme absorption in the host, which is confirmed by the unusually large optical extinction found by modelling the X-ray to nIR afterglow spectral energy distribution. Our Chandra observations obtained 8 days post-burst allow us to place the afterglow on the sky to sub-arcsec accuracy, enabling us to pinpoint an extremely red galaxy (ERO). Follow-up host observations with HST, Spitzer, Gemini, Keck and the James Clerk Maxwell Telescope (JCMT) provide a photometric redshift solution of z ~1.74 (+0.05,-0.06) (1 sigma), 1.56 < z < 2.08 at 2 sigma) for the ERO host, and suggest that it is a massive and morphologically disturbed ultra-luminous infrared galaxy (ULIRG) system, with L_FIR ~ 2.4 x 10^12 L_solar. These results add to the growing evidence that GRBs originating in very red hosts always show some evidence of dust extinction in their afterglows (though the converse is not true -- some extinguished afterglows are found in blue hosts). This indicates that a poorly constrained fraction of GRBs occur in very dusty environments. By comparing the inferred stellar masses, and estimates of the gas phase metallicity in both GRB hosts and sub-mm galaxies we suggest that many GRB hosts, even at z>2 are at lower metallicity than the sub-mm galaxy population, offering a likely explanation for the dearth of sub-mm detected GRB hosts. However, we also show that the dark GRB hosts are systematically more massive than those hosting optically bright events, perhaps implying that previous host samples are severely biased by the exclusion of dark events.Comment: 13 pages, 6 figures, accepted for publication in MNRA

    Estimating Redshifts for Long Gamma-Ray Bursts

    Get PDF
    We are constructing a program to estimate the redshifts for GRBs from the original Swift light curves and spectra, aiming to get redshifts for the Swift bursts \textit{without} spectroscopic or photometric redshifts. We derive the luminosity indicators from the light curves and spectra of each burst, including the lag time between low and high photon energy light curves, the variability of the light curve, the peak energy of the spectrum, the number of peaks in the light curve, and the minimum rise time of the peaks. These luminosity indicators can each be related directly to the luminosity, and we combine their independent luminosities into one weighted average. Then with our combined luminosity value, the observed burst peak brightness, and the concordance redshift-distance relation, we can derive the redshift for each burst. In this paper, we test the accuracy of our method on 107 bursts with known spectroscopic redshift. The reduced χ2\chi^2 of our best redshifts (zbestz_{best}) compared with known spectroscopic redshifts (zspecz_{spec}) is 0.86, and the average value of log10(zbest/zspec)log_{10}(z_{best}/z_{spec}) is 0.01, with this indicating that our error bars are good and our estimates are not biased. The RMS scatter of log10(zbest/zspec)log_{10}(z_{best}/z_{spec}) is 0.26. For Swift bursts measured over a relatively narrow energy band, the uncertainty in determining the peak energy is one of the main restrictions on our accuracy. Although the accuracy of our zbestz_{best} values are not as good as that of spectroscopic redshifts, it is very useful for demographic studies, as our sample is nearly complete and the redshifts do not have the severe selection effects associated with optical spectroscopy.Comment: The Astrophysical Journal accepte

    Low-Luminosity Gamma-Ray Bursts as a Distinct GRB Population:A Firmer Case from Multiple Criteria Constraints

    Full text link
    The intriguing observations of Swift/BAT X-ray flash XRF 060218 and the BATSE-BeppoSAX gamma-ray burst GRB 980425, both with much lower luminosity and redshift compared to other observed bursts, naturally lead to the question of how these low-luminosity (LL) bursts are related to high-luminosity (HL) bursts. Incorporating the constraints from both the flux-limited samples observed with CGRO/BATSE and Swift/BAT and the redshift-known GRB sample, we investigate the luminosity function for both LL- and HL-GRBs through simulations. Our multiple criteria, including the log N - log P distributions from the flux-limited GRB sample, the redshift and luminosity distributions of the redshift-known sample, and the detection ratio of HL- and LL- GRBs with Swift/BAT, provide a set of stringent constraints to the luminosity function. Assuming that the GRB rate follows the star formation rate, our simulations show that a simple power law or a broken power law model of luminosity function fail to reproduce the observations, and a new component is required. This component can be modeled with a broken power, which is characterized by a sharp increase of the burst number at around L < 10^47 erg s^-1}. The lack of detection of moderate-luminosity GRBs at redshift ~0.3 indicates that this feature is not due to observational biases. The inferred local rate, rho_0, of LL-GRBs from our model is ~ 200 Gpc^-3 yr^-1 at ~ 10^47 erg s^-1, much larger than that of HL-GRBs. These results imply that LL-GRBs could be a separate GRB population from HL-GRBs. The recent discovery of a local X-ray transient 080109/SN 2008D would strengthen our conclusion, if the observed non-thermal emission has a similar origin as the prompt emission of most GRBs and XRFs.Comment: 22 pages, 9 figures, 3 tables; MNRAS, in press; Updated analysis and figure
    • …
    corecore