We show how the observed gamma ray burst (GRB) optical afterglow (OA) and
redshift distributions are changing in time from selection effects. For a
subset of {\it Swift} triggered long duration bursts, we show that the mean
time taken to acquire spectroscopic redshifts for a GRB OA has evolved to
shorter times. We identify a strong correlation between the mean time taken to
acquire a spectroscopic redshift and the measured redshift. This correlation
reveals that shorter response times favour smaller redshift bursts. This is
compelling evidence for a selection effect that biases longer response times
with relatively brighter high redshift bursts. Conversely, for shorter response
times, optically fainter bursts that are relatively closer are bright enough
for spectroscopic redshifts to be acquired. This selection effect could explain
why the average redshift, ≈2.8 measured in 2005, has evolved to
≈2, by mid 2008. Understanding these selection effects provides an
important tool for separating the contributions of intrinsically faint bursts,
those obscured by host galaxy dust and bursts not seen in the optical because
their OAs are observed at late times. The study highlights the importance of
rapid response telescopes capable of spectroscopy, and identifies a new
redshift selection effect that has not been considered previously, namely the
response time to measure the redshift.Comment: 5 pages, 4 figures, MNRAS Letter (accepted