82 research outputs found

    Perturbing the Ubiquitin Pathway Reveals How Mitosis Is Hijacked to Denucleate and Regulate Cell Proliferation and Differentiation In Vivo

    Get PDF
    The eye lens presents a unique opportunity to explore roles for specific molecules in cell proliferation, differentiation and development because cells remain in place throughout life and, like red blood cells and keratinocytes, they go through the most extreme differentiation, including removal of nuclei and cessation of protein synthesis. Ubiquitination controls many critical cellular processes, most of which require specific lysines on ubiquitin (Ub). Of the 7 lysines (K) least is known about effects of modification of K6.We replaced K6 with tryptophan (W) because K6 is the most readily modified K and W is the most structurally similar residue to biotin. The backbone of K6W-Ub is indistinguishable from that of Wt-Ub. K6W-Ub is effectively conjugated and deconjugated but the conjugates are not degraded via the ubiquitin proteasome pathways (UPP). Expression of K6W-ubiquitin in the lens and lens cells results in accumulation of intracellular aggregates and also slows cell proliferation and the differentiation program, including expression of lens specific proteins, differentiation of epithelial cells into fibers, achieving proper fiber cell morphology, and removal of nuclei. The latter is critical for transparency, but the mechanism by which cell nuclei are removed has remained an age old enigma. This was also solved by expressing K6W-Ub. p27(kip), a UPP substrate accumulates in lenses which express K6W-Ub. This precludes phosphorylation of nuclear lamin by the mitotic kinase, a prerequisite for disassembly of the nuclear membrane. Thus the nucleus remains intact and DNAseIIβ neither gains entry to the nucleus nor degrades the DNA. These results could not be obtained using chemical proteasome inhibitors that cannot be directed to specific tissues.K6W-Ub provides a novel, genetic means to study functions of the UPP because it can be targeted to specific cells and tissues. A fully functional UPP is required to execute most stages of lens differentiation, specifically removal of cell nuclei. In the absence of a functional UPP, small aggregate prone, cataractous lenses are formed

    Oxidative stress causes ERK phosphorylation and cell death in cultured retinal pigment epithelium: Prevention of cell death by AG126 and 15-deoxy-delta 12, 14-PGJ(2)

    Get PDF
    BACKGROUND: The retina, which is exposed to both sunlight and very high levels of oxygen, is exceptionally rich in polyunsaturated fatty acids, which makes it a favorable environment for the generation of reactive oxygen species. The cytotoxic effects of hydrogen peroxide (H(2)O(2)) induced oxidative stress on retinal pigment epithelium were characterized in this study. METHODS: The MTT cell viability assay, Texas-Red phalloidin staining, immunohistochemistry and Western blot analysis were used to assess the effects of oxidative stress on primary human retinal pigment epithelial cell cultures and the ARPE-19 cell line. RESULTS: The treatment of retinal pigment epithelial cells with H(2)O(2 )caused a dose-dependent decrease of cellular viability, which was preceded by a significant cytoskeletal rearrangement, activation of the Extracellular signal-Regulated Kinase, lipid peroxidation and nuclear condensation. This cell death was prevented partially by the prostaglandin derivative, 15d-PGJ(2 )and by the protein kinase inhibitor, AG126. CONCLUSION: 15d-PGJ(2 )and AG126 may be useful pharmacological tools in the future capable of preventing oxidative stress induced RPE cell death in human ocular diseases

    Redox control of protein degradation

    Get PDF
    Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies

    Inhibition of protein ubiquitination by paraquat and 1-methyl-4-phenylpyridinium impairs ubiquitin-dependent protein degradation pathways

    Get PDF
    Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson’s disease (PD). Ubiquitin (Ub), alpha [α]-synuclein, p62/sequestosome 1 and oxidized proteins are major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effect of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP+, or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ–induced cell death. Inhibition of proteasomal activity by PQ was found to be a late event in cell death progression, and had no effect on either the toxicity of MPP+ or PQ, or the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins) and carbonylated proteins induced by PQ. PQ- and MPP+-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagic. We confirmed that PQ and MPP+ impaired autophagy flux, and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane associated foci in yeast cells. Our results demonstrate that inhibition of protein ubiquitination by PQ and MPP+ is involved in the dysfunction of Ub-dependent protein degradation pathways
    corecore