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Inhibition of protein ubiquitination by paraquat and 1-methyl-4-
phenylpyridinium impairs ubiquitin-dependent protein 
degradation pathways

Juliana Navarro-Yepes1,2,4,*, Annadurai Anandhan1,2,*, Erin Bradley1, Iryna Bohovych1,3, Bo 
Yarabe1, Annemieke de Jong5, Huib Ovaa5, You Zhou3, Oleh Khalimonchuk1,3, Betzabet 
Quintanilla-Vega4,⍌, and Rodrigo Franco1,2,⍌

1Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA 2School of Veterinary 
Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 
3Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA 4Department of 
Toxicology, CINVESTAV-IPN, Mexico City, D.F., Mexico 5Division of Cell Biology II, The 
Netherlands Cancer Institute, Amsterdam, The Netherlands

Abstract

Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the 

pathological hallmark of Parkinson’s disease (PD). Ubiquitin (Ub), alpha [α]-synuclein, p62/

sequestosome 1 and oxidized proteins are major components of Lewy bodies. However, the 

mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in 

PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide 

exposure. In this work, we evaluated the effect of the pesticide paraquat (PQ) and the 

mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+) on Ub-dependent protein degradation 

pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in 

dopaminergic cells (SK-N-SH) treated with PQ or MPP+, or in mice chronically exposed to PQ. 

PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with 

cycloheximide depleted Ub levels and potentiated PQ–induced cell death. Inhibition of 

proteasomal activity by PQ was found to be a late event in cell death progression, and had no 

effect on either the toxicity of MPP+ or PQ, or the accumulation of oxidized sulfenylated, 

sulfonylated (DJ-1/PARK7 and peroxiredoxins) and carbonylated proteins induced by PQ. PQ- 

and MPP+-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding 

protein p62 that regulates the clearance of ubiquitinated proteins by autophagic. We confirmed that 

PQ and MPP+ impaired autophagy flux, and that the blockage of autophagy by the overexpression 

of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but 

there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the 

accumulation of α-synuclein in dopaminergic cells and membrane associated foci in yeast cells. 
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Our results demonstrate that inhibition of protein ubiquitination by PQ and MPP+ is involved in 

the dysfunction of Ub-dependent protein degradation pathways.

Keywords

Ubiquitin-proteasome system; sequestosome 1; SQSTM1; MPP+; ubiquitylation; autophagy; 
pesticides; Parkinson’s disease

INTRODUCTION

Proteins are continually at risk of damage, misfolding, and aggregation. If not properly 

degraded, misfolded protein aggregates can cause cellular toxicity and disease. Cells have 

evolved an elaborated network of protein quality control mechanisms to maintain the 

integrity of the proteome. Protein homeostasis (proteostasis) involves specific processes that 

guard protein synthesis, folding and trafficking. In addition, protein degradation pathways 

such as the ubiquitin (Ub)-proteasome-system (UPS) and autophagy, degrade misfolded or 

aggregated proteins to avoid proteotoxic stress [1]. A dysfunction in protein quality control 

mechanisms is a hallmark in neurodegenerative diseases [2,1]. Lewy bodies (LBs) found in 

Parkinson’s disease (PD) brains are composed of misfolded protein aggregates. A number of 

proteins have been identified as major components of LBs including α-synuclein, Ub and 

p62 [3–5]. Inhibition of proteasomal activity has been proposed to lead to the accumulation 

of Ub-bound proteins including α-synuclein [2]. Interestingly, other reports have 

demonstrated the presence of Ub-negative protein inclusions in PD brains [6–7], suggesting 

that different mechanisms other than impaired proteasomal activity, can be involved in the 

accumulation of misfolded protein aggregates.

A disruption in autophagic pathways has also been linked to PD pathogenesis [2,1,8–9]. It is 

now well established that protein ubiquitination (or ubiquitylation) directs the recognition of 

selective cargo for degradation via the autophagosome-lysosome system [10–11]. 

Conditional disruption of autophagy in dopaminergic cells leads to the accumulation of 

ubiquitinated protein aggregates in vivo [12–13]. Recognition of ubiquitinated proteins for 

their degradation by autophagy is mediated by the adapter protein p62/sequestosome 1 

(SQSTM1), and the neighbor of BRCA1 gene 1 (NBR1). p62 binds ubiquitinated proteins 

via its Ub-associated (UBA) C-terminal domain, while its binding to autophasomal LC3/

GABARAP proteins involves a short linear sequence known as LIR (LC3-interacting region) 

[11,14]. Interestingly, p62 also mediates the autophagic clearance of non-ubiquitinated 

proteins [15–16], and it may mediate the degradation of some poly-ubiquitinated proteins by 

the proteasome [17–18].

A large variety of oxidative protein modifications can be induced by reactive oxygen/

nitrogen species, or by-products of oxidative stress. Oxidized proteins can form oligomeric 

complexes resulting in the formation of protein aggregates. Irreversibly oxidized proteins 

such as protein carbonyls have to be degraded in order to maintain proper cellular 

homeostasis. Ub-dependent and independent degradation of oxidized proteins by the 26S or 

20S proteasome has been reported. However, covalent crosslinks, disulphide bonds, 

hydrophobic interactions, and heavily oxidized stable protein aggregates are not suitable for 
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proteasomal degradation. Recent evidence suggests that autophagy plays a major role in the 

removal of oxidized protein aggregates by their incomplete degradation within the lysosomal 

compartment that results in the formation of polymerized lipofuscin-like aggregates 

consisting of oxidized polypeptides [19–20]. Interestingly, p62 silencing enhances the 

accumulation of oxidized proteins [21], supporting a role for protein ubiquitination in the 

clearance of oxidized proteins by autophagy [22].

Mitochondrial dysfunction and oxidative stress are causative factors for dopaminergic cell 

loss in PD. Sporadic (non-hereditary) PD accounts for >80% of reported cases, while genetic 

mutations only account for 5% of sporadic PD occurrence [23]. Exposures to environmental 

toxicants, including pesticides (paraquat [PQ] and rotenone), are recognized as risk factors 

for an increased susceptibility to develop PD [24–29]. Thus, mitochondrial toxins such as 

inhibitors of complex I (1-methyl-4-phenylpyridinium [MPP+] and rotenone) and pesticides 

(PQ and rotenone as well) are used as toxicological models to dissect the molecular 

mechanisms by which mitochondrial dysfunction and oxidative stress mediate dopaminergic 

cell death. It has been reported that PQ and MPP+ induce the accumulation of Ub-bound 

protein aggregates by impairment of the proteasomal activity [30–32]. We and others have 

reported that impairment of autophagy facilitates dopaminergic cell death induced by PQ 

and MPP+ [33–34]. Both autophagy and the UPS are complementary protein degradation 

pathways where inhibition of the UPS triggers the clearance of Ub-bound proteins or 

aggregates by autophagy [35–36,1–2]. However, their exact and complementary contribution 

to dopaminergic cell death and the clearance of misfolded/oxidized protein aggregates 

induced by environmental/mitochondrial toxins has not been clarified.

In this work, we demonstrate that the environmental toxicant PQ and the mitochondrial 

complex I inhibitor MPP+ decrease protein ubiquitination in dopaminergic cells. Inhibition 

of the proteasome activity was found to be a late stage during cell death progression, and did 

not modulate the toxicity of either PQ or MPP+. Depletion of Ub was shown to parallel p62 

dimerization/inactivation, and the accumulation of oxidized proteins and α-synuclein. 

Inhibition of autophagy stimulated PQ and MPP+ toxicity. Our results demonstrate that early 

impairment in Ub protein synthesis by environmental and mitochondrial insults inactivates 

p62 and Ub-dependent degradation pathways.

MATERIALS AND METHODS

Reagents

Chloroquine, 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenylpyridinium iodide (MPP+), 

and rotenone were obtained from SIGMA-Aldrich. 6-OHDA was prepared as described 

previously [37]. Paraquat (PQ, 1,1′-dimethyl-4,4′-bipyridinium dichloride) and 

cycloheximide (CHX) were purchased from Acros Organics. (S)-MG132 (carbobenzoxy-L-

leucyl-L-leucyl-L-leucinal, Z-LLL-CHO) was obtained from Cayman Chemical. Pyr-41 (4-

[4-[(5-Nitro-2-furanyl)methylene]-3,5-dioxo-1-pyrazolidinyl]benzoic acid ethyl ester) was 

purchased from Tocris. Stock solutions for MG132, Pyr-41 and rotenone were prepared in 

DMSO (vehicle). All other chemicals, were from SIGMA-Aldrich, Thermo Fisher Scientific 

or Acros Organics.
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Cell culture and treatments

The dopaminergic properties of the neuroblastoma cell line SK-N-SH and their cell culture 

have been detailed before [33]. The Lund Human Mesencephalic (LUHMES) neuronal 

precursor cell line, a subclone of the tetracycline-controlled v-myc-overexpressing human 

mesencephalic-derived cell line MESC2.10, was purchased from the American Type Culture 

Collection (ATCC, Biosource Center). Culture of LUHMES cells was done according to 

Scholz et al., [38]. Briefly, culture ware was pre-coated with 50 µg/ml poly-L-ornithine 

(SIGMA-Aldrich) and 1 µg/ml fibronectin (BD Biosciences). Cells were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM)/Ham’s F-12 Nutrient Mixture (GIBCO or 

Hyclone) supplemented with Neuroplex N-2 (Gemini or Life Technologies), 2 M L-

glutamine (GIBCO or Hyclone), and 40 ng/ml recombinant basic fibroblast growth factor 

(bFGF, Peprotech or StemRD). Cells were grown at 37°C in a 5% CO2 humidified 

atmosphere. Cells were treated as indicated in the figures. Control conditions included the 

appropriate vehicle, which never exceed >0.01% (v/v).

Protein extraction and western immunoblot (WB)

Protein extraction and quantification were done as explained before [39]. For the detection 

of sulfenic acid modified proteins (PSOH) cells were incubated with the cell-permeable 

nucleophilic reagent dimedone prior to harvesting. Dimedone selectively reacts with the 

electrophilic sulfur atom in sulfenic acid to form a stable thioether that can be detected using 

the anti-sulfenic acid modified 2-thiodimedone specific antibody [40]. The protein carbonyl 

content was determined by the reaction of carbonyl groups in protein side chains with 2,4–

dinitrophenylhydrazine (DNPH, SIGMA-Aldrich) to form 2,4-dinitrophenylhydrazone 

(DNP), which is detected using anti-DNP antibodies (SIGMA-Aldrich). Cells were lysed in 

the presence of 1 mM DTPA (SIGMA-Aldrich). Ten µg of protein were dissolved with a 

final concentration of 6% sodium dodecyl sulfate (SDS) w/v, and were derivatized by the 

addition of 20 mM DNPH in 10% trifluoroacetic acid (TFA, w/v) [41–42]. After 

derivatization, samples were neutralized with 2 M Tris, 30% Glycerol (v/v) and 10.2% β-

mercaptoethanol (v/v) to obtain a final concentration of 2.8% (v/v).

Polyacrylamide gel electrophoresis (PAGE) was performed using Bis-Tris (with 3-(N-

morpholino) propansulfonic acid [MOPS] + 5 mM sodium bisulfite-based running buffer), 

or Tris-Glycine gels. Proteins were transferred to nitrocellulose (GE Healthcare Life 

Sciences) or PVDF membranes (Maine Manufacturing). Blots were blocked and incubated 

with the corresponding primary antibodies as recommended by the manufacturers: anti-Ub 

P4D1 (Cat # 3936) and α-synuclein (Cat # 2642, carboxy-terminal sequence) were from 

Cell Signaling; anti-green fluorescent protein (GFP, Cat # 1020) was from Aves Labs; anti-

SQSTM1/p62 (Cat # Ab109012), anti-sulfonylated peroxiredoxins (Prx-SO3H, Cat # 

ab16830), and anti-sulfonylated DJ-1 (DJ-1-SO3H, Cat #ab169520) were from Abcam; anti-

PSOH modified 2-thiodimedone-specific antibody (Cat #ABS30) was from Millipore; and 

anti-DNP (Cat # D9656), and anti-microtubule-associated protein 1B-light chain (3LC3B, 

Cat # L7543) were from SIGMA-Aldrich. Blots were probed with β-actin (Cat #A2228, 

SIGMA-Aldrich) to verify equal protein loading. Peroxidase conjugated secondary anti-

rabbit, anti-mouse or anti-chicken antibodies (Thermo Scientific or Cell Signaling 

Technology) were used and bands were detected using enhanced chemiluminescence (ECL) 
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western blotting substrate (Thermo Scientific/Pierce or Amersham/GE Healthcare Life 

Sciences) in a C DiGit Chemiluminescence Western Blot Scanner (LI-COR Biosciences) or 

a VersaDoc Gel Imaging System (Bio-Rad).

Analysis of high molecular weight aggregates (HMW) of α-synuclein from soluble and 

insoluble fractions (SDS-PAGE), and native α-synuclein conformation by Blue Native-

polyacrylamide gel electrophoresis (BN-PAGE) from Triton (X-100) insoluble fractions was 

performed as explained before [43].

Filter trap assay for ubiquitinated protein aggregates

Cells were harvested as explained before, and proteins were denatured in lithium dodecyl 

sulfate (LDS)-sample buffer. Ten to 50 µg of protein were filtered in a nitrocellulose 

membrane previously equilibrated in transfer buffer using a dot blotter (Scie-Plas). 

Membranes were washed twice with 2% SDS (w/v), 10 mM Tris-EDTA, pH 7.5 buffer and 

Ub-bound protein aggregates were detected by immunoblotting [44].

Cell death determination (loss of plasma membrane integrity) and oxidative stress

Loss of cell viability was determined using flow cytometry by measuring propidium iodide 

uptake (PI, 1 µg/ml) (Life Technologies or SIGMA-Aldrich) as a marker of plasma 

membrane integrity loss. Flow cytometry was performed as explained before [45–46,37].

Evaluation of ubiquitin-dependent and -independent protein degradation

The plasmid encoding the Ub-dependent (GFPµ) fluorescence reporter was kindly provided 

by Dr. Ron Kopito (Stanford University) [47]. GFPµ consists of the fusion of a 16 amino 

acid CL1 degron (a degradation signal identified in yeast) with the carboxyl terminus of 

GFP. CL1 targets GFP for ubiquitination, aggregation and degradation by the proteasome 

[47]. The GFPµ plasmid was linearized with Nde I and transfected into SK-N-SH cells using 

FuGENE HD reagent (Promega). Cells stably overexpressing GFPµ were selected in 

medium containing 0.3 mg/ml geneticin (G418, Acros Organics), and GFPµ positive cells 

were sorted in a FACSAria cell sorter (BD Biosciences). After treatment, cells were 

harvested in phosphate-buffered saline (PBS) and analyzed by flow cytometry. GFPµ was 

excited with a 488 nm laser and the emission was detected through a 530/30 emission filter 

in a FACSort (BD Biosciences / Cytek-DxP-10 upgrade) flow cytometer. The geometric 

mean of GFPµ fluorescence intensity was assessed in viable cells (PI negative [-]).

Determination of proteasomal activity in total cell lysates

Total cell lysates were prepared on ice by homogenization in radioimmunoprecipitation 

assay buffer (RIPA: 50 mM Tris-HCl pH 8.0, 150 mM NaCl2, 1.0% Igepal [NP-40, v/v], 

0.5% sodium deoxycholate [w/v], 0.1% SDS [w/v]). Lysates were cleared by centrifugation 

and protein content was determined by the bicinchoninic acid assay (BCA) method. The 

chymotrypsin-like activity was measured using the Proteasome Activity Assay Kit (Abcam 

107921) that utilizes a 7-Amino-4-Methylcoumarin (AMC)-tagged peptide substrate (Succ-

LLVY-AMC), which upon cleavage, releases free fluorescent AMC. Proteasomal-mediated 

AMC release was measured kinetically for 120 min using a microplate reader (TECAN, 

excitation/emission of 350/440 nm) in the presence or absence of MG132. Results were 
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expressed as U/ml/mg of protein, where one unit (U) of proteasome activity is defined as the 

amount of proteasome that generates 1.0 nmol of AMC per minute (nmol/min).

Evaluation of cellular proteasomal activity

After treatment, cells were incubated with the boron-dipyrromethene (Bodipy)-tagged cell-

permeable proteasome activity probe BodipyFL-Ahx3L3VS (200 nM) for 2 h, which was 

synthesized as explained before [48–49]. Cells were harvested in PBS. BodipyFL-

Ahx3L3VS was excited with a 488 nm laser and the emission was detected through a 530/30 

emission filter in a BDFACSort (Cytek-DxP-10 upgrade). The geometric mean of 

BodipyFL-Ahx3L3VS fluorescence intensity was assessed to evaluate changes in 

fluorescence that directly relate to proteasome activity.

Evaluation of ubiquitin B (UBB) mRNA levels

RNA was extracted with Trizol (Life Technologies) following the manufacturer’s 

instructions and quantified in a Nanodrop 2000 (Thermo Scientific). cDNA strands were 

synthesized using 5 µg of RNA and Moloney Murine Leukemia Virus Reverse Transcriptase 

M-MLV (200 U/µL, Life Technologies), Oligo (dT) primer (0.5 µg/µL, Life Technologies) 

and dNTPs (2.5 mM each, Applied Biosystems) during one cycle of amplification under the 

following conditions: 1) 65 °C / 5 min, 2) 37 °C / 50 min, and 3) 70 °C / 15 min (Applied 

Biosystems 2720 Thermal Cycler). The UBB mRNA expression levels were determined by 

real time PCR (RT-PCR) using 100 ng of cDNA as template, TaqMan Universal PCR Master 

Mix (Applied Biosystems), and specific TaqMan probes for the human poly-ubiquitin gene 

UBB (Hs00430290_m1 FAM, Applied Biosystems). The probe used to detect UBB mRNA 

amplifies 6 different variants (NM_018955 and NM_001281716-9). RT-PCR was performed 

in an ABI Prism 7500 (Applied Biosystems) under the following conditions: step 1) 50°C / 2 

min; step 2) 95°C / 10 min; and step 3) 40 cycles of 95°C / 15 sec, followed by 60°C / 1 

min. Data were normalized to human glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 

Hs02758991_g1 VIC) as endogenous housekeeping gene by the relative standard curve 

method (http://www.uic.edu/depts/rrc/cgf/realtime/stdcurve), and the results were expressed 

as relative expression levels with respect to the control group.

Recombinant adenoviral vectors

The replication-deficient recombinant adenovirus (Ad5CMV) encoding a dominant negative 

form (dn) of the autophagy protein 5 (ATG5) was kindly provided by Dr. Gökhan S. 

Hotamisligil (Harvard School of Public Health, Boston, MA) [50]. Adenoviruses encoding 

wild type (WT) or mutant A53T α-synuclein were provided by Dr. Jean-Christophe Rochet 

(Purdue University) and have been described elsewhere [51,43]. Adenovirus containing only 

the CMV promoter (Ad-Empty) was used as a negative control. Viruses were amplified and 

tittered in HEK293T cells as previously described [52,39]. Cells were infected with viral 

particles at the indicated multiplicity of infection (MOI), and 24 h post-infection, they were 

washed and treated under the specified experimental conditions.
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In vivo mouse model of paraquat toxicity

C57BL/6 mice (8–10 weeks old) (Jackson Labs) were administered two intraperitoneal 

injections of 10 mg/kg PQ or PBS every week for 9 consecutive weeks [53]. Animals were 

analyzed 1 week after the last injection. Mice were decapitated and midbrains were removed 

for WB analysis. For immunohistochemistry, mice were perfused intracardially with 4% 

paraformaldehyde (PFA) in 0.1 M sodium phosphate buffer (pH 7.4). Brains were removed, 

post-fixed for 24 h in 4% PFA and cryoprotected with 30% sucrose. Frozen brains were cut 

into 30 µm coronal sections using a sliding microtome at −16°C, and stored in PBS at 4°C 

until the immunohistochemical procedure. Endogenous peroxidase activity was inactivated. 

Sections were blocked with 10% normal horse serum (Life Technologies) and incubated 48 

h with anti-tyrosine hydroxylase antibody (TH, Calbiochem, EMD/Millipore Cat # AB1542) 

or anti-Ub at 4°C. After rinsing, sections were incubated in secondary Alexa 647-anti-mouse 

or Alexa 568-anti-sheep (Jackson ImmunoResearch) for 1 h at RT. Sections were mounted 

with Fluoro-gel (Electron Microscopy Sciences) containing 4’,6-diamidino-2-phenylindole 

(DAPI) to label nuclei. Images were collected on an Olympus IX 81 inverted confocal 

scanning fluorescent microscope (10x or 60x oil lens) (Olympus America) using Fluoview 

500 Software. All procedures involving animals were reviewed and approved by the 

Institutional Animal Care and Use Committee of the University of Nebraska-Lincoln 

(Project 1025)

Yeast experiments

Saccharomyces cerevisiae W303-1A strain (MATa can1-100 ade2-1his3-1,15 leu2-3,112 
trp1-1 ura3-1) harboring chromosomally integrated human α-synuclein-GFP expression 

cassette under the control of the inducible GAL1 promoter was generated and handled as 

previously described [43]. For confocal microscopy, live cells were visualized with 100x oil 

lens. For survival assays, aliquots of the yeast culture were diluted to 300 cells and plated 

onto YP (yeast peptone) plates containing 2% glucose (YPD, w/v) or 2% galactose (YPGal, 

w/v) as the sole carbon source. The colony forming units or degenerative colonies were 

scored following 2 (YPD plates) or 4 (YPGal plates) days of incubation at 28 °C.

Statistical analysis

Experimental replicas were independent and performed on separate days. Collected data 

were analyzed by using one-way, two-way or three-way ANOVA, and the appropriate post-

hoc test using SIGMA-PLOT/STAT package. When ANOVA assumptions were not met 

(normality [Shapiro–Wilk test] or equal variance) Kruskal-Wallis one-way ANOVA on 

Ranks or data transformation (two-way ANOVA) were performed on the collected data. 

Data were plotted as mean ± standard error (SE) using the same package for statistical 

analysis. Flow cytometry plots and immunoblots presented show the results of representative 

experiments. Relative densitometry analysis of WBs and dot blots was made using the 

ImageJ Program (National Institutes of Health, http://rsb.info.nih.gov/ij).
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RESULTS

Effect of PD-related toxicants on the accumulation of Ub-bound proteins

PD is linked to mitochondrial dysfunction and environmental pesticides exposure [54–55]. 

Previous reports have demonstrated that PD-related toxicants impair the activity of the 

proteasome leading to the accumulation of Ub-bound protein aggregates [30–32,56–57]. We 

found that exposure of dopaminergic neuroblastoma cells (SK-N-SH) to PQ induces a dose-

dependent decrease in ubiquitinated protein levels (Suppl. Fig. 1a). Lower non-toxic 

concentrations of PQ (≤0.2 mM) induced no changes in the levels of ubiquitin-bound 

proteins (Suppl. Fig. 1a). Higher toxic concentrations of PQ (≥0.5-1 mM) induced a slight 

decrease in ubiquitinated proteins (Suppl. Fig. 1a). Similarly, PQ induced a dose dependent 

decrease in the accumulation of Ub-bound proteins in the mesencephalic neuronal precursor 

cell line LUHMES (Suppl. Fig. 1a), whose sensitivity to PQ is significantly higher (∼100 to 

200 µM, not shown). These results demonstrate that the decrease in ubiquitinated protein 

levels induced by PQ is not cell type specific.

A decrease in ubiquitinated proteins can be ascribed to different phenomena including an 

enhanced proteasomal activity, a decrease in protein ubiquitination, and/or a reduced 

availability of free Ub monomers/chains. To test this possibility, cells were treated with PQ 

and incubated with the cell permeable proteasome inhibitor MG132 (0.2 µM) 24 h prior to 

analysis (see Fig. 1a upper box). As previously reported [43], at this concentration and time 

of incubation MG132 efficiently inhibits the proteasome activity leading to the accumulation 

of Ub-bound proteins without triggering significant cell death by itself (Suppl. Fig. 1b and 

Fig. 2a–b). PQ induced a dose-dependent decrease in Ub-bound proteins even in the 

presence of MG132 (Fig. 1a, quantified in 1b [with respect to control] and in Suppl. Fig. 1c 

[with respect to each treatment in the absence of MG132]), suggesting that the decreased 

accumulation of ubiquitinated proteins is ascribed to a reduction in protein ubiquitination. 

Similarly, treatment with the mitochondrial toxin MPP+, but not rotenone or 6-OHDA, also 

reduced protein ubiquitination (Fig. 1c).

A dysfunction in the UPS has been shown to lead to the formation of SDS-resistant 

aggregates (aggresomes) [58–59]. Protein complexes and aggregates are not well resolved 

by WB due to their high molecular weight. Thus, we evaluated the changes in both 

ubiquitinated proteins and aggregates by filter trap (retardation) dot blot assay. Fig. 1d 

corroborates that both PQ and MPP+ induce a decrease in protein ubiquitination, evaluated 

in the presence of MG132. Finally, to evaluate the effect of PQ exposure on the levels of Ub-

bound proteins in dopaminergic cells in vivo, C57Bl/6 mice were exposed chronically (9 

weeks) to PQ. Immunohistochemistry analysis of TH+ neurons and Ub shows that no major 

increase in Ub staining was induced by PQ in dopaminergic (TH+) cells (Fig. 1e).

We have previously demonstrated that cell death induced by PQ is a stochastic process 

[33,45,39], which means that it occurs at different rates within the same cell population. As 

such, WB analysis does not allow us to determine if the changes in Ub-bound protein levels 

occur before or after cell death (i.e. samples are composed by a mixed population of cells at 

different stages during the cell death process). Thus, we next evaluated the accumulation of 

GFPµ, a substrate for the UPS, in live cells (as depicted in broken square regions in Fig. 2a 
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and c). Treatment with MG132 induces the accumulation of GFPµ (Fig. 2a–b). Lower non-

toxic concentrations of PQ (≤ 0.2 µM) induced a significant accumulation of GFPµ (Fig. 2c–

d), which agrees with the overall decrease in protein ubiquitination previously seen (Fig. 1a–

b, PQ + MG132 data). Surprisingly, while higher toxic concentrations of PQ decrease 

protein ubiquitination further (Fig. 1a–b) this was not translated in added accumulation of 

GFPµ (Fig. 2c–d). A time-course analysis of changes in GFPµ levels induced by a toxic 

concentration of PQ (0.5 mM, 48 h, Suppl. Fig. 2a), or a sub-toxic PQ concentration (0.1 

mM, 96 h, Fig. 2e) also evidenced an early accumulation of GFPµ followed by a reduction in 

its levels in live cells irrespective to the dose of PQ used or the length of exposure. Similarly, 

MPP+, which also impairs protein ubiquitination (Fig. 1c), also induced a reduction in GFPµ 

content (Suppl. Fig. 2b–c). Poly-ubiquitin tagged proteins have a half-life (t1/2) of ≤ 30 min 

[60]. The GFPµ reporter has a reported short-term t1/2 = 30 min [61–62], while GFP itself 

has a t1/2 = 24 h [63]. Thus, our results suggest that while the transient accumulation of UPS 

substrates (GFPµ) induced by PQ is linked to an impairment of protein-ubiquitination (Fig. 

2d–e), the subsequent Ub-independent decrease in GFPµ induced by both PQ and MPP+ is 

likely linked to impaired protein synthesis.

Impairment of proteasomal activity by PQ is a late step in the cell death process

Previous studies have demonstrated that PD-related toxicants including PQ and MPP+ 

impair proteasomal activity [64–65,30–31,57]. We found that the activity of the proteasome 

decreased in lysates from cells treated with toxic PQ concentrations (≥ 0.5 mM) (Fig. 3a). 

However, due to the stochastic nature of cell death progression, this assay does not allow us 

to evaluate if changes in the activity of the proteasome occur prior to cell death, or if they 

are only an epiphenomenon associated with the loss of cellular viability. Thus, we evaluated 

the changes in the activity of the proteasome in intact cells using the cell permeable 

proteasome activity probe BodipyFL-Ahx3L3VS [49,48]. MG132 inhibits the processing of 

BodipyFL-Ahx3L3VS by the proteasome (Fig. 3c and Suppl. Fig. 3a). PQ (Fig.3b and 3c) 

and MPP+ (Suppl. Fig. 3b) induced a dose-dependent increase in proteasome activity. 

Accordingly, previous studies have reported that PQ and MPP+ induce an early increase in 

proteasomal activity [66–68]. Thus, our results suggest that the impairment in proteasomal 

activity induced by PQ and other PD-related insults is a late event associated with the loss of 

cell viability. Accordingly, MG132 had no effect on PQ-, MPP+-, rotenone- or 6-OHDA-

induced toxicity (Fig. 3d).

PQ reduces Ub-protein content but not Ub-mRNA transcription

The decrease in protein ubiquitination induced by PQ and MPP+ might be mediated by 

impairment in the activity of Ub-activating (E1s) and Ub-conjugating enzymes (E2s), and/or 

Ub-ligases (E3s). A decrease in the activity of these enzymes is translated in the 

accumulation of free Ub monomers/chains [69]. However, we found that treatment of cells 

with PQ induced a decrease in Ub-monomers (Fig. 4a and Suppl. Fig. 3c), suggesting that a 

decrease in the Ub-protein pool, rather than an impairment in the E1-E2-E3 system, is linked 

to the reduced levels of protein ubiquitination. Ub is encoded in mammals by 4 genes. 

UBA52 and RPS27A genes code for a single copy of Ub fused to ribosomal proteins, while 

the UBB and UBC genes code for poly-Ub precursor proteins. We evaluated if the reduction 

in Ub protein levels induced by PQ is mediated by a decrease in gene transcription. 
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Surprisingly, a significant increase in UBB mRNA transcription/stability was observed at 

lower concentrations of PQ (≤ 0.2 mM) (Fig. 4b). These results demonstrate that Ub-protein 

synthesis or stability, but not Ub-gene transcription, is impaired by PQ.

We next evaluated the role of Ub-protein synthesis inhibition/depletion in PQ toxicity. 

Because Ub is encoded by 4 genes, its knockdown is experimentally cumbersome as 

reported in previous studies demonstrating that while UBB knockdown reduces Ub 

monomers by 70%, it only decreases Ub-bound proteins by 30% [70]. A previous study 

demonstrated that the protein synthesis inhibitor cycloheximide (CHX) depletes cellular Ub 

resulting in a decrease in steady-state poly-ubiquitinated proteins [71]. Depletion of Ub-

bound proteins was induced by CHX treatment (48 h, Fig. 4c), which only resulted in a 

slight increase in cell death (Fig. 4d). CHX significantly stimulated PQ toxicity (Fig. 4d), 

suggesting that Ub depletion, but not inactivation of the proteasome, contributes to PQ 

toxicity. Ub depletion by itself does not induce cell death, suggesting that additional events 

linked to PQ or MPP+ exposure (oxidative damage or mitochondrial dysfunction) in addition 

to impaired protein ubiquitination are required for cell death progression.

PQ-induced oxidized protein accumulation is not regulated by the proteasome

Clearance of oxidized proteins has been shown to be mediated by both Ub-dependent and -

independent proteasomal degradation pathways [72–73]. PQ induced a dose-dependent 

accumulation of sulfenylated protein cysteine residues (PSOH), irreversibly oxidized 

(sulfonylated PSO3H) DJ-1 and peroxiredoxins (Prxs), and protein carbonyls (Fig. 5a–c and 

Suppl. Fig. 4a–b). However, inhibition of the proteasome with MG132 did not increase 

further the accumulation of oxidized protein byproducts (Fig. 5a–c and Suppl. Fig. 4a–b), 

suggesting that the increased load in oxidized proteins is ascribed to impaired protein 

ubiquitination but not to a decrease in proteasomal activity. We have previously 

demonstrated that oxidative stress induced by MPP+ is primarily restricted to the 

mitochondria matrix [45]. Accordingly, no accumulation of oxidized DJ-1 or Prxs was 

observed upon exposure to MPP+.

Dimerization of p62 parallels the impairment in protein ubiquitination and autophagy flux

Selective degradation of ubiquitinated protein aggregates is also mediated by autophagy via 

the Ub binding receptor p62 [10]. p62 binds to ubiquitinated proteins via its UBA C-

terminal domain. Interestingly, the UBA domain, which has a low affinity for Ub, also 

mediates the formation of highly stable symmetrical inactive dimmers. p62 dimerization and 

Ub-binding are mutually exclusive [74]. Thus, we considered that Ub depletion induced by 

PQ might dimerize/inactivate p62. Inhibition of Ub activating enzymes (E1s) with Pyr 41 

induced p62 dimerization (Fig. 6a and Suppl. Fig. 5a) [75]. PQ, and to a lesser extent MPP+ 

and 6-OHDA, but not rotenone also induced a dose-dependent dimerization of p62 (Fig. 6b 

and Suppl. Fig. 5b–c). Overexpression of a dominant negative form of ATG5 (dnATG5), 

which together with ATG12 and ATG16 is essential for autophagosome formation [76], 

enhanced p62 dimerization (Fig. 6b and Suppl. Fig. 5b). Overexpression of dnATG5 did not 

impair the decrease in ubiquitinated proteins/aggregates induced by PQ demonstrating that 

Ub-protein depletion parallels p62 dimerization (Fig. 6c).
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The accumulation of autophagosomes is evidenced by an increase in the levels of the 

microtubule–associated protein light chain (LC3–I) protein in its lipidated form (LC3–II). 

As previously reported [77,36,78], inhibition of the proteasome with MG132 induces 

autophagy (Suppl. Fig. 5d). We and others have previously demonstrated that PQ and the 

complex I inhibitors MPP+ and rotenone impair autophagy flux [33–34,79], defined as the 

complete process beginning with the formation of the phagophore, and ending after the 

fusion of the autophagosomes with the lysosome for the degradation of lysosomal cargo 

[46,9]. Autophagy flux was inferred by WB analysis of LC3–II turnover in the presence of 

cloroquine (CQ), the inhibitor of lysosomal cargo degradation that specifically inhibits the 

acid-dependent breakdown of autolysosome content without affecting autophagosome–

lysosome fusion, which results in the accumulation of autophagolysosomes that cannot be 

cleared [46]. Fig. 6d and Suppl. Fig. 5e–f corroborate that PQ induces a dose- and time-

dependent impairment in autophagy flux. We have previously demonstrated that 

overexpression of dnATG5 inhibits autophagy and potentiates PQ and MPP+ toxicity [33]. 

Protein degradation mechanisms are complementary, and dysregulation of either the UPS or 

autophagy has been reported to be mutually compensated, particularly in the clearance of 

aggregated proteins linked to neurodegenerative disorders [35–36,80–85]. While inhibition 

of autophagy with dnATG5 overexpression stimulated PQ toxicity, MG132 exerted no 

additional toxicity when combined with dnATG5 overexpression Fig. 6e. These results 

demonstrate that Ub-protein depletion induced by PQ and MPP+ is linked to the inactivation 

of p62 that precedes the decrease in autophagy flux. Autophagy but not the proteasome 

regulates the progression of PQ and MPP+-induced dopaminergic cell death.

Paraquat increases the pathological accumulation of α-synuclein in dopaminergic cells 
and membrane-associated foci in yeast

Clearance of misfolded/aggregated α-synuclein has been shown to be mediated by both 

autophagy and the ubiquitin/proteasome pathways [86,84–85]. Previous studies have 

reported that PQ upregulates the levels of α-synuclein [87–90,34]. We observed no effect of 

PQ on the total endogenous levels of α-synuclein in SK-N-SH dopaminergic cells (data not 
shown) or in PQ treated C57Bl/6 (Fig. 7a). Thus we evaluated if PQ could alter the 

pathological accumulation of α-synuclein when overexpressed (as a PD model of SNCA 
multiplication) or when mutated. Overexpression of α-synuclein (WT or A53T mutant) in 

SK-N-SH cells for 72 h, in the presence or absence of PQ did not induce the accumulation 

of HMW aggregates of α-synuclein (SDS-PAGE analysis of whole cell lysates containing 

soluble and insoluble fractions), but it increased the accumulation α-synuclein in its 

monomeric form (Fig. 7b). α-synuclein is reported to exist predominantly as stable unfolded 

monomers that migrate as 57–60 kDa proteins (Fig.7c). It is unclear whether the larger than 

expected size of the bands is a result from the monomers adopting an unfolded extended 

conformation, which results in a larger than expected hydrodynamic radius [91–93], or if it 

represents a fraction of α-synuclein existing as a stable tetramer [94–95]. We have 

previously demonstrated that inhibition of the proteasome promotes the accumulation of α-

synuclein in this unfolded state (or tetramer) and the appearance of a band with enhanced 

lower MW [43]. Similarly, PQ induced the accumulation of unlfoded α-synuclein (Fig. 7c) 

and the accumulation of a low MW band immunoreactive for α-synuclein (depicted with * 

in Fig. 7c).
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To further interrogate the effect of PQ on α-synuclein distribution we used the budding yeast 

S. cerevisiae genetic model overexpressing an inducible promoter-driven fusion of α-

synuclein-GFP. Yeast has been extensively used as a valid experimental platform to elucidate 

the fundamental mechanisms associated with neurodegenerative diseases [96]. The inducible 

expression of α-synuclein can result in no toxicity, intermediate toxicity, or high toxicity in 

relation to the levels of α-synuclein being expressed. α-synuclein-GFP overexpressed in 

yeast at non-toxic levels localizes at the plasma membrane, consistent with its known 

affinity to phospholipids (Fig. 7d). This is the expected localization of a protein that 

localizes at synaptic vesicles in neurons, when considering that yeast has constitutive 

vesicular secretion [96]. Acute or chronic treatment of yeast cells with PQ induced the 

accumulation of membrane associated foci (Fig. 7d). While α-synuclein overexpression had 

no effect in SK-N-SH (not shown) or yeast cell death induced by PQ (Fig. 7e), in yeast it 

induced the formation of degenerative colonies (Fig. 7e) (smaller in size and impeded in 

their ability to propagate normally). These results suggest that the accumulation of 

monomeric α-synuclein and its localization at the plasma membrane is regulated by PQ.

DISCUSSION

The etiology of PD involves the convergence of aging, genetic and environmental risk 

factors [54,97]. A disruption in protein quality control mechanisms is linked to the 

accumulation of protein inclusions and neuronal cell loss observed in neurodegenerative 

disorders including PD [98,2]. Ub selectively targets cargo to the three major protein 

degradation pathways, the proteasome, the lysosome, and the autophagosome [99], and 

environmental/mitochondrial toxicants inhibit the activity of the proteasome and impair 

autophagy flux [57,33]. However, the effects of environmental/mitochondrial toxicants on 

other components of Ub-dependent protein degradation pathways have not been studied in 

detail, and inhibition of the proteasome is still considered the major mechanism involved in 

the impairment of the Ub-dependent degradation of misfolded/damage proteins. In this 

work, we demonstrated that impaired protein ubiquitination is an early and central step in 

the impairment of protein degradation pathways induced by PQ and MPP+. The depletion of 

the Ub protein pool induced by both agents was observed at both sub-toxic and toxic 

(subchronic) exposures and was not cell type specific. Furthermore, Ub-protein depletion 

was paralleled by the inactivation of p62 and in the case of PQ, the accumulation of oxidized 

protein byproducts and alterations in the levels of monomeric α-synuclein and its 

distribution at the plasma membrane (Fig. 8). These results might explain the heterogeneity 

of protein inclusions in PD brains (LBs), particularly, the presence of Ub–negative protein 

inclusions [6–7].

A decrease in the activity of the proteasome has been found in PD brains [100–103]. 

Previous studies have also demonstrated that environmental and mitochondrial toxins 

including PQ and MPP+ impair the activity of the proteasome by: 1) direct inhibition of the 

proteasome, 2) mitochondrial dysfunction and energy depletion, or 3) oxidative stress 

[64,30,104,31,57]. Similar to previous reports [34,30,105,31] we observed that high and 

toxic PQ concentrations induced a decrease in the chymotrypsin-like activity of the 

proteasome. However, biochemical assays of proteasomal activity are usually done in lysates 

from cell samples (or PD tissues), where the decrease in proteasome activity might be 
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confounded by the loss of cells (viability). Using a novel cell-permeable proteasomal 

substrate (BodipyFL-Ahx3L3VS), we found that both sub-toxic and toxic concentrations of 

PQ and MPP+ increase the activity of the proteasome prior to cell death. Interestingly, 

previous studies have demonstrated that MPP+-induced dopaminergic cell death actually 

requires an increase in the activity of the proteasome [66–67]. Our findings do not argue 

against previous studies demonstrating that impairment in proteasome activity is induced by 

PD-related toxicants [64,30,104,31,57]. However, our results suggest that inhibition of the 

proteasome by environmental / mitochondrial toxicants might be a late event only ascribed 

to the loss of cell viability. As such, inhibition of the proteasome had no effect on PQ or 

MPP+ induced toxicity. Accordingly, previous in vivo studies using the MPP+ precursor 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) found no stimulating effect of 

proteasome inhibition on dopaminergic cell death [106].

Previous reports have demonstrated that PD-related toxicants induce the accumulation of 

Ub-bound protein aggregates, which has been ascribed primarily to proteasome inhibition by 

these agents [30–32,104,56–57]. In vivo, MPTP has been shown to induce both an increase 

and a decrease in the levels of Ub-bound proteins using different experimental paradigms 

[32,107]. While we did observe a slight increase in the accumulation of the UPS fluorescent 

substrate GFPµ, this transient increase seems to precede the late decrease in proteasomal 

activity. Proteasomal activity is very robust and GFPµ accumulation induced by proteasome 

inhibitors has been reported to require about 70% inhibition of proteasomal activity [47]. 

Thus, our results are more consistent with the notion that the transient increase in GFPµ 

accumulation is primarily linked to impaired ubiquitination and not to the inhibition of the 

proteasome.

We demonstrated here that the primary effect of acute or prolonged treatment with PQ and 

MPP+ at either high (toxic) or low (sub-toxic) doses is a decrease in protein ubiquitination 

(Fig. 8). We and others have previously shown that chronic inhibition of the proteasome 

depletes cells from Ub [108,43,109]. Bence et al. found that the GFPµ fluorescence rapidly 

declined in cells after the exposure to a protein-synthesis inhibitor due to the impaired 

synthesis of short–lived proteins such as GFPµ [61–62]. However, PQ-induced Ub-protein 

depletion seems to precede the inhibition of the proteasome, discarding a possible negative 

feedback loop from the proteasome to Ub-protein synthesis. Interestingly, while MPP+ 

reduced protein ubiquitination, rotenone (another complex I inhibitor) had no such effect, 

which adds to the cumulative evidence that the toxicity induced by MPP+ and rotenone 

might actually involve different mechanisms [33,45,110–115].

Levels of endogenous Ub-conjugates depend on the balance between 1) the rate of Ub 

conjugation determined by the availability of Ub, the activity of the E1-E2-E3 system and 

ATP levels; and 2) the rate of the turnover of Ub-conjugates (degradation/deubiquitination), 

which depends on the activity of the proteasome, autophagy and deubiquitinating enzymes 

[99]. Several components of the UPS can present different sensitivities to oxidative damage/

modulation [116–123]. Deubiquitinating enzymes are inhibited by oxidation of their 

catalytic cysteine residue [124–125]. The proteasome has been reported to be more 

susceptible to oxidative inhibition than Ub-conjugating enzymes [126,116,127]. 

Accordingly, mild to moderate oxidative stress upregulates Ub and the Ub-conjugating 
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system promoting the formation of Ub-conjugates, and reducing the activity of the 

proteasome. In contrast, extensive but not lethal oxidative stress reduces the formation of 

Ub-conjugates by inactivating Ub–conjugating enzymes promoting the accumulation/

aggregation of damaged/abnormal proteins [126]. While it is possible that PQ might 

interfere with the activity of the Ub-conjugating system (E1, E2 and E3s), this should have 

been translated into the accumulation of Ub monomers/free chains. In contrast, PQ clearly 

depleted cells from Ub even at sub-toxic concentrations. Thus, our results imply that PQ-

induced depletion of Ub-bound proteins is associated with a decrease in the Ub-protein pool.

While PQ clearly reduced the Ub-protein pool, Ub mRNA levels were shown to increase in 

response to PQ, which is consistent with the notion that Ub is a stress-inducible protein 

[70,128]. These findings suggest that PQ or MPP+ might impair the synthesis of Ub at the 

post-transcriptional level or modify Ub protein stability. Protein synthesis has been shown to 

be more sensitive to oxidative stress than DNA/RNA synthesis [129]. Ub-protein depletion 

induced by PQ and MPP+ was also paralleled by a decrease in GFPµ fluorescence in stable 

cells. Thus, our results indicate that PQ and MPP+ are likely impairing overall protein 

synthesis, which should initially affect short-lived proteins such as Ub and GFPµ (Fig. 8). 

MPP+ has been previously shown to inhibit protein synthesis [130], but the mechanisms 

involved remain unknown. PQ and MPP+ induce oxidative stress and energy failure, which 

can affect overall protein synthesis. The correct attachment of amino acids to each tRNA 

species that is required for protein synthesis is an energy-dependent process carried out by 

aminoacyl-tRNA synthetases. Additionally, aminoacyl-tRNA synthetases also hydrolyze 

(edit) an incorrectly attached amino acid, and oxidative stress induces protein mistranslation 

and degradation by impairment of aminoacyl-tRNA synthetase editing [131]. Oxidative 

stress also diverts tRNA synthetases to the nucleus to protect against oxidative damage 

[132]. Moreover, oxidized mRNA, protein mistranslation and subsequent degradation have 

been recently recognized as important contributors to neurodegeneration [133–138]. To 

determine whether energy failure, oxidative stress or both impair Ub-protein synthesis will 

require further investigation. However, we have demonstrated here and in previous studies 

that oxidative stress induced by MPP+ and low PQ concentrations is primarily ascribed to 

mitochondria [45], suggesting that energy failure might be the primary mechanism involved 

in impaired protein (Ub) synthesis.

An increased accumulation of oxidized protein byproducts is found in PD brains. Elevated 

levels of carbonylated proteins [139] and cysteine oxidized proteins including the hydrogen 

peroxide scavengers Prxs and the early onset PD-related protein-gene DJ-1/PARK7 [140–

142] are important oxidative biomarkers detected in PD brains. We observed that PQ 

induced an increase in the accumulation of PSOH, precursors of irreversibly oxidative 

protein sulfinic (PSO2H) and PSO3H acid modifications. Accordingly, PQ also induced a 

dose-dependent accumulation of irreversibly oxidized DJ-1-SO3H and Prxs-SO3H, as well 

as protein carbonyls. Both DJ-1 and Prx turnover has been proposed to be mediated by the 

UPS [143–145]. Cysteine sulfenylation at the N-terminus of proteins is an important step in 

the endoproteolytic cleavage and formation of N-degrons recognized by the UPS [146]. Both 

Ub-dependent and Ub-independent degradation of oxidized proteins has been reported [72–

73,126,147,22]. Accumulation of oxidized proteins in the absence of Ub-bound protein 

aggregates suggests that ubiquitination might be required for the degradation of oxidized 
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proteins induced by PQ. Aging is the main risk factor in the development of PD [148]. 

Similar to our results, it was observed that in an aging yeast model poly-ubiquitinated 

proteins are significantly reduced even in the presence of a decrease in proteasomal activity 

leading to an increase/accumulation of oxidized proteins [149]. Moreover, a decrease in Ub-

conjugates as well as in de novo Ub conjugation activity was reported in lenses from aged 

rats, and these effects were associated with the accumulation of damaged proteins [150].

It has been recently recognized the important role that autophagy plays in the degradation of 

ubiquitinated cargo. Both the UPS and autophagy play complementary roles in the 

degradation of misfolded protein aggregates such as α-synuclein [2,151–152,84,86]. Heavily 

oxidized stable protein aggregates are not suitable for proteasomal degradation, and 

autophagy is thought to also play a major role in the degradation of oxidized protein 

aggregates [19–20]. The UPS and autophagy are complementary pathways, where 

alterations in the rate of one system are reported to modify those of the other one. In 

particular, impairment of the UPS system triggers autophagy [82–83,153]. Interestingly, 

while contradicting results exist regarding the ability of proteasome inhibitors to induce 

selective neurodegeneration [154–159], impairment of autophagy seems to selectively 

induce dopaminergic cell loss in vivo [12–13,160]. Indeed we observed that MG132 induces 

autophagy. However, whereas inhibition of ATG5-dependent autophagy stimulated PQ and 

MPP+ toxicity no additional effect was induced by proteasome inhibition. The fact that 

inhibition of autophagy stimulates PQ and MPP+ toxicity without exerting an effect on the 

accumulation of Ub-bound proteins (this work and [33]), suggests that the protective effects 

of autophagy are independent from its role in protein degradation.

Ubiquitinated proteins are selectively targeted to the autophagosome-lysosome system via 

Ub binding proteins, primarily p62/SQSTM [99,10]. p62 has been found in LBs from PD 

and dementia with LBs (DLB) brains [161–164], neurofibrillary tangles from Alzheimer’s 

disease brains, and in Huntingtin aggregates [4,165–166]. Likewise, it has been shown that 

α-synuclein inclusions and oxidized proteins can be degraded through the p62-dependent 

autophagy clearance [164,21]. A recent report demonstrated that the UBA domain, which 

has a low affinity for Ub, also mediates the formation of inactive p62 dimmers, and that p62 

dimerization and Ub-binding are mutually exclusives [74]. In our study, we found that the 

inhibition of Ub-activating enzymes (E1s) and the depletion of the Ub-protein pool induced 

by PQ and MPP+ are paralleled by p62 inactivation/dimerization (Fig. 8). As we reported 

before [33], PQ and MPP+ induce a dose- and time-dependent impairment in autophagy 

flux. Thus, our results suggest that p62 inactivation by Ub-protein depletion might be a 

mechanism by which PQ and MPP+ also impair autophagy (Fig. 8). p62 has been reported to 

regulate mitophagy and stress response signaling via the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 

among others [14,74,167–169]. It is likely that p62 dimerization might be regulating the 

stress response of cells treated with PQ and MPP+, and we expect to address this in the 

future.

Clearance of misfolded/aggregated α-synuclein has been shown to be mediated by both 

autophagy and the ubiquitin/proteasome pathways [86,84–85]. Ubiquitination of α-

synuclein by E3 Ub-ligases (seven in absentia homologue-1 [SIAH1], E6 associated protein 
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[E6-AP], neural precursor cell expressed developmentally down-regulated protein 4 

[Nedd4], tumor necrosis factor-receptor associated factor 6 [TRAF6]) has been proposed to 

regulate its degradation via the proteasome or endosomal-lysosomal degradation pathways 

[170–174].Interestingly, Ub-independent α-synuclein degradation via the 20S proteasome 

has also been reported [175]. Recent studies have demonstrated that ubiquitination of α-

synuclein in different lysine residues mediates diverse effects including the formation of 

protein inclusions or Lewy bodies [176–178], which is now considered a protective 

mechanism against the accumulation of toxic protofibrillar intermediates, as aggregation of 

α-synuclein might be required for its detoxification [179]. PQ alone had no effect on the 

endogenous α-synuclein levels, but when WT or mutant A53T α-synuclein were 

overexpressed, PQ induced an increase accumulation of α-synuclein in its monomeric form. 

Indeed, ubiquitination of monomeric and fibrillar α-synuclein has been reported previously 

[180]. Furthermore, we observed that in yeast cells, where α-synuclein is localized at the 

plasma membrane, PQ treatment induced the accumulation of membrane foci, suggesting 

that alterations in protein ubiquitination might alter membrane sorting or turnover of α-

synuclein. In fact it has been demonstrated that in yeast, localization of α-synuclein to the 

plasma membrane requires the secretory pathway [181], and α-synuclein was also reported 

to be ubiquitinated by Nedd4 [170], a homologous to the E6-AP carboxyl terminus [HECT]-

domain E3 that functions at the plasma membrane in the turnover/sorting of a number of 

membrane-associated proteins [182].

Overall, our results uncover a new mechanism by which environmental (PQ) and 

mitochondrial toxicants (MPP+) impair Ub-dependent proteostatic mechanisms. Post-

transcriptional depletion of the Ub-protein pool impairs both proteasome and p62-autophagy 

mediated protein degradation pathways. Depletion of the Ub protein pool seems to be 

associated with the accumulation of oxidized proteins, alterations in the levels/distribution of 

α-synuclein, and precede the impairment in proteasome activity and autophagy flux (Fig. 8).
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Fig. 1. PQ and MPP+ impair protein ubiquitination
a. Ub–bound proteins were evaluated by WB in SK-N-SH cells treated with PQ for 48 h. 

Cells were treated with the proteasome inhibitor MG132 (0.2 µM) 24 h prior to analysis. b. 

Relative quantification (densitometry) of Ub-bound proteins in the presence of MG132 (●). 

Cells were treated as explained before (a). Data was normalized to β-actin and represented 

as fold change with respect to control (no PQ treatment). Cell death (○) was determined by 

the loss of plasma membrane integrity (PI uptake) and represented as % of cells with high PI 

fluorescence. Data are means ± S.E of at least n = 3. One-way ANOVA, Holm-Sidak post 
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hoc test: a, p<0.05; Kruskal-Wallis One Way ANOVA on Ranks, Dunn’s post hoc test: b, 

p<0.05 compared to the corresponding control (no drug treatment). c. Changes in the levels 

of Ub-bound proteins were determined by WB in cells treated for 48 h with the complex I 

inhibitors MPP+ (2.5 mM) and rotenone (Rot, 4 µM) and the hydroxylated dopamine analog 

6-OHDA (6-OH, 50 µM). d. Cells were treated as explained above (a and c) and 

ubiquitinated proteins and aggregates were evaluated by dot blot. Relative quantification of 

ubiquitinated proteins (numbers in italics) was normalized to β-actin and represented with 

respect to the indicated control. e. Immunohistochemistry detection of ubiquitinated proteins 

in the substantia nigra of C57Bl/6 mice treated for 9 weeks with PBS (e1-e5) or PQ (e6-

e10). Blue squares in e1 or e6 depict the area of magnification for e2-e5 (PBS) or e7-e10 

(PQ) panels. Scale bars, e1 and e6: 200 µm; e2-e5 and e7-e10: 20 µm. TH+, tyrosine 

hydroxylase positive neurons.
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Fig. 2. PQ induces a transient accumulation of GFPµ, a reporter for the UPS
In a and c, the simultaneous analysis of cell death and changes in the levels of GFPµ induced 

by MG132 (24 h) or PQ treatment (48 h) was done by flow cytometry. Data are represented 

in two-dimensional 5% probability contour plots of changes in PI uptake (y axis) vs changes 

in GFPµ fluorescence (x axis). Broken squares depict how viable cells were selected. %s in 

contour plots represent the number of cells per quadrant. Using this type of analysis (gating), 

the changes in GFPµ induced by MG132 or PQ were quantified in b, d and e graphs. The 

geometric mean of GFPµ fluorescence intensity (●) was assessed in viable cells (PI negative 
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[-]) and represented as fold change with respect to control. Cell death (○) was represented as 

% of cells with high PI fluorescence. Data in graphs are means ± S.E of at least n = 3. 

Kruskal-Wallis One Way ANOVA on Ranks, Student-Newman-Keuls (SNK) post hoc test: a, 

p<0.05 compared to the corresponding control (no drug treatment).
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Fig. 3. Effects of PQ and MPP+ on the activity of the proteasome
Cells were treated with the indicated toxicants for 48 h. a. The proteasomal 20S 

chymotripsyn–like activity was evaluated in total cell lysates by evaluation of the changes in 

AMC fluorescence released from the hydrolysis of Suc-LLVY-AMC. The proteasome 

inhibitor MG132 was used as a positive control (5 µM for 6 h). Data are expressed as 

U/ml/mg protein. b. Changes in the activity of the proteasome were evaluated in live cells 

using the cell permeable proteasome substrate BodipyFL-Ahx3L3VS. Histograms represent 

the distribution of cells with different levels of BodipyFL-Ahx3L3VS fluorescence. c. The 
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geometric mean of BodipyFL-Ahx3L3VS fluorescence intensity was quantified and 

represented as fold change with respect to control. MG132 was used as a positive control 

(0.2 µM for 16 h prior to the incubation with BodipyFL-Ahx3L3VS) . Background 

fluorescence (Control- in b) was subtracted. d. Cell death was determined in the presence or 

absence of MG132 (0.2 µM) by evaluating the loss of plasma membrane integrity (PI 

uptake) and represented as % of cells with high PI fluorescence. Data in graphs are means ± 

S.E of n = 3–5. Kruskal Wallis One-way ANOVA on ranks, Student Newman Keuls post hoc 
test: a, p<0.05; Mann Whitney Rank Sum t-test: *p<0.05 compared to the corresponding 

control (no drug treatment).
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Fig. 4. PQ impairs Ub-protein synthesis
a. Changes in the levels of Ub–monomers and free chains were evaluated by WB (18% Tris 

glycine gels) in lysates from SK-N-SH cells treated with PQ for 48 h. Cells were treated 

with the proteasome inhibitor MG132 (0.2 µM) 24 h prior to analysis. Relative 

quantification of ubiquitinated proteins (numbers in italics) was normalized to β-actin and 

represented with respect to control. b. RT-PCR analysis of the changes in poly-ubiquitin 

gene UBB mRNA levels in cells treated with PQ for 48 h. Data were normalized using 

GAPDH as endogenous housekeeping gene. Results are expressed as changes in the relative 
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expression level compared to the control (no PQ treatment). c. Ub–bound proteins were 

evaluated by WB in cells treated with CHX for 48 h in the presence or absence of the 

proteasome inhibitor MG132 (as explained in a). d. Cell death was determined in cells 

treated with PQ, in the presence or absence of CHX (100 µM) by evaluating the loss of 

plasma membrane integrity (PI uptake) and represented as % of cells with high PI 

fluorescence. Data in graphs are means ± S.E of n = 3–5. One-way ANOVA, Holm-Sidak 

post hoc test: a, p<0.05 compared to the corresponding control (no drug treatment). Two-

way ANOVA, Holm-Sidak post hoc test: b, p<0.05 compared to the corresponding PQ 

concentration without CHX treatment.

Navarro-Yepes et al. Page 38

Mol Neurobiol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. The accumulation of oxidized protein induced by PQ is not regulated by the proteasome
Cells were treated with PQ for 48 h in the presence or absence of 0.2 µM MG132 (as 

exemplified in Fig. 1a). a. PSOHs were determined in cells incubated with the PSOH 

selective probe dimedone prior to the analysis. PSOHs were visualized using the anti-PSOH 

modified Cysteine 2-Thiodimedone-specific antibody. b. Levels of irreversibly oxidized 

DJ-1 and Prxs (PSO3H) were detected by WB. Relative quantification of ubiquitinated 

proteins (numbers in italics) was normalized to β-actin and represented with respect to the 

indicated control. c. Protein carbonyls were detected by WB in total cell lysates derivatized 
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with DNPH. Carbonylated proteins were detected using anti-DNP antibody. Graphs indicate 

the densitometry analysis of changes in the levels of PSOHs or protein carbonyls normalized 

to β-actin and expressed as fold change with respect to control. Data are means ± S.E of five 

independent experiments. Kruskal-Wallis One Way ANOVA on Ranks, Student-Newman-

Keuls (SNK) post hoc test: a, p<0.05 compared to the corresponding control (no drug 

treatment).
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Fig. 6. PQ treatment induces the dimerization/inactivation of p62 and impairs autophagy
a. Cells were treated with the Ub-conjugating enzyme inhibitor (E1) Pyr-41 for 24h. p62 

dimerization (inactivation) was evaluated by WB. Dimerization of p62 is evidenced by an 

increase in p62 dimers with the concomitant decrease p62 monomers. b. p62 dimerization 

was also evaluated in cells treated with PQ for 48h. When indicated, cells were transduced 

with dnATG5 or Empty viruses (-dnATG5) 24 h before PQ treatment. Relative quantification 

of p62 dimerization was represented as p62 dimers / p62 monomers ratio, normalized to β-

actin and expressed with respect to the indicated control (numbers in italics in a and b). c. 
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Cells were treated as explained above (b) and ubiquitinated proteins and aggregates were 

evaluated by dot blot. Relative densitometry quantification of ubiquitinated proteins was 

normalized to β-actin and represented with respect to the indicated control (numbers in 
italics). d. Alterations in autophagy flux induced by PQ were determined by changes in the 

levels of the autophagosome marker LC3-II in the presence of CQ (40 µM, incubated 4 h 

prior to analysis), an inhibitor of lysosomal cargo degradation. Relative densitometry 

quantification of LC3-II (numbers in italics) was normalized to β-actin and represented with 

respect to the indicated control. e. Cell death was determined in cells treated with PQ, in the 

presence or absence of MG132 (0.2 µM). When indicated, cells were transduced with 

dnATG5 or Empty (- dnATG5) viruses 24 h before PQ treatment. Cell death was evaluated 

by the loss of plasma membrane integrity (PI uptake) and represented as % of cells with high 

PI fluorescence. Data are means ± S.E of n = 3–5. Two-way ANOVA, Holm-Sidak post hoc 
test analysis of data without MG132: a, p<0.05 dnATG5 vs Empty within the corresponding 

PQ category.
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Figure 7. Effect of PQ on α-synuclein accumulation and distribution
a. WB analysis of α-synuclein levels in the midbrain of C57Bl/6 mice treated for 9 weeks 

with PQ or PBS. b-c. Cells were transduced with Ad-Empty, Ad-α-synuclein or Ad-A53T 

for 24h (3 MOI), washed and then treated with or without PQ (48 h). Whole cell lysates or 

TX-100 insoluble fractions were analyzed by SDS (b) or BN--PAGE (c), respectively, and 

α-synuclein was visualized by WB. Numbers (italics) represent the densitometry analysis 

normalized to β-actin with respect to the corresponding control. d. Wild-type S. cerevisiae 
cells containing genome-integrated human α-synuclein-GFP expression cassette under the 
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control of GAL1 promoter were cultured in the medium containing 2% glucose or 2% 

galactose. The galactose-grown cells were then treated with the indicated amounts of PQ for 

1 h (acute treatment), 48 h (chronic treatment). Subcellular distribution of α-synuclein-GFP 

was visualized by confocal microscopy. Shown are representative images of cells that have 

been acutely treated with PQ. Scale bars are 5 µm. Arrows indicate membrane associated 

foci of α-synuclein-GFP. Bar graphs show quantitation of α-synuclein-GFP foci. At least 

300 cells per condition, per sample were analyzed. e. Yeast cultures described above were 

diluted to 300 cells and plated for survival on glucose- or galactose-containing plates with or 

without PQ. Following 4-days incubation at 28°C, the plates were inspected for colony 

forming units and the presence of small, degenerative colonies. The left panel shows 

representative images of cell growth on galactose plates with and without 1 mM PQ. Arrows 

indicate degenerative colonies. The panels on the right show quantitation of cell survival and 

percentage of degenerative colonies on glucose and galactose-containing plates containing 

the indicated amounts of PQ. Bar graphs are means ± S.D. (n=4); *p<0.05, **p<0.01, 

***p<0.001 by unpaired t-test.
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Fig. 8. PQ- and MPP+-induced Ub-protein depletion and p62 inactivation are early steps in the 
impairment of Ub-dependent protein degradation pathways (UPS and autophagy)
Our data suggests that PD-related toxicants PQ and MPP+ deplete the Ub protein pool (red 

arrow) by a mechanism that might involve oxidative mRNA damage, energy failure, or 

altered Ub protein stability. Ub depletion leads to the inactivation (dimerization) of the 

ubiquitin binding receptor p62 that directs ubiquitinated cargo for degradation via the 

authophagosome-lysosome pathway. Ub-protein depletion and p62 inactivation impair Ub-

dependent protein degradation pathways, and parallel the accumulation of oxidized/

misfolded proteins (yellow arrows) and alterations in the levels/distribution of α-synuclein 

(not exemplified). Severe/chronic oxidative stress and/or energy failure induced by 
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environmental and mitochondrial toxicants would eventually lead to a decrease in the 

activity of the proteasome and impaired autophagy flux (red crosses).
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