37 research outputs found

    Dendritic cell subsets in the intestinal lamina propria: ontogeny and function

    Get PDF
    The intestinal mucosa is exposed to large amounts of foreign antigen (Ag) derived from commensal bacteria, dietary Ags, and intestinal pathogens. Dendritic cells (DCs) are believed to be involved in the induction of tolerance to harmless Ags and in mounting protective immune responses to pathogens and, as such, to play key roles in regulating intestinal immune homeostasis. The characterization of classical DCs (cDCs) in the intestinal lamina propria has been under intense investigation in recent years but the use of markers (including CD11c, CD11b, MHC class II), which are also expressed by intestinal MΦs, has led to some controversy regarding their definition. Here we review recent studies that help to distinguish cDCs subsets from monocyte-derived cells in the intestinal mucosa. We address the phenotype and ontogeny of these cDC subsets and highlight recent findings indicating that these subsets play distinct roles in the regulation of mucosal immune responses in vivo

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    The Role of Retinoic Acid in Tolerance and Immunity

    Get PDF
    Vitamin A elicits a broad array of immune responses through its metabolite, retinoic acid (RA). Recent evidence indicates that loss of RA leads to impaired immunity, whereas excess RA can potentially promote inflammatory disorders. In this review, we discuss recent advances showcasing the crucial contributions of RA to both immunological tolerance and the elicitation of adaptive immune responses. Further, we provide a comprehensive overview of the cell types and factors that control the production of RA and discuss how host perturbations may affect the ability of this metabolite to control tolerance and immunity or to instigate pathology

    Vitamin A Metabolism by Dendritic Cells Triggers an Antimicrobial Response against Mycobacterium tuberculosis.

    Get PDF
    Epidemiological evidence correlates low serum vitamin A (retinol) levels with increased susceptibility to active tuberculosis (TB); however, retinol is biologically inactive and must be converted into its bioactive form, all-trans retinoic acid (ATRA). Given that ATRA triggers a Niemann-Pick type C2 (NPC2)-dependent antimicrobial response against Mycobacterium tuberculosis, we investigated the mechanism by which the immune system converts retinol into ATRA at the site of infection. We demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived dendritic cells (DCs), but not macrophages, express enzymes in the vitamin A metabolic pathway, including aldehyde dehydrogenase 1 family, member a2 (ALDH1A2) and short-chain dehydrogenase/reductase family, member 9 (DHRS9), enzymes capable of the two-step conversion of retinol into ATRA, which is subsequently released from the cell. Additionally, mRNA and protein expression levels of ALDH1A2 and DC marker CD1B were lower in tuberculosis lung tissues than in normal lung. The conditioned medium from DCs cultured with retinol stimulated antimicrobial activity from M. tuberculosis-infected macrophages, as well as the expression of NPC2 in monocytes, which was blocked by specific inhibitors, including retinoic acid receptor inhibitor (RARi) or N,N-diethylaminobenzaldehyde (DEAB), an ALDH1A2 inhibitor. These results indicate that metabolism of vitamin A by DCs transactivates macrophage antimicrobial responses.IMPORTANCE Tuberculosis (TB) is the leading cause of death by a single infectious agent worldwide. One factor that contributes to the success of the microbe is the deficiency in immunomodulatory nutrients, such as vitamin A (retinol), which are prevalent in areas where TB is endemic. Clinical trials show that restoration of systemic retinol levels in active TB patients is ineffective in mitigating the disease; however, laboratory studies demonstrate that activation of the vitamin A pathway in Mycobacterium tuberculosis-infected macrophages triggers an antimicrobial response. Therefore, the goal of this study was to determine the link between host retinol levels and retinoic acid-mediated antimicrobial responses against M. tuberculosis By combining established in vitro models with in situ studies of lung tissue from TB patients, this study demonstrates that the innate immune system utilizes transcellular metabolism leading to activation between dendritic cells and macrophages as a means to combat the pathogen

    Dendritic cells in oral tolerance in the gut

    No full text
    Oral tolerance is a process that allows generation of systemic unresponsiveness to food antigens. Hence if the same antigen is introduced systemically even under immunogenic conditions it does not induce immune responsiveness. Dendritic cells (DCs) have been identified as essential players in this process. DCs in the gut are located in a strategic position as they can interact directly with luminal antigens or indirectly after their transcytosis across epithelial cells. DCs can then migrate to associated lymphoid tissues to induce tolerance. Antigen presenting cells in the gut are specialized in function and have divided their labour so that there are cells capable to migrate to the draining mesenteric lymph node for induction of T regulatory cells, while other subsets are resident and are required to enforce tolerance locally in the gut after food antigen exposure. In this review, I shall summarize the characteristics of antigen presenting cells in the gut and their involvement in oral tolerance induction. In addition, I will also emphasize that tolerance to food allergens may be contributed by plasmacytoid DCs in the liver that participate to the elimination or anergy of allergen-specific CD8 T cells. Hence specialized functions are associated to different subsets of antigen presenting cells and different organs

    Vitamin A metabolism and mucosal immune function are distinct between BALB/c and C57BL/6 mice

    No full text
    The vitamin A metabolite retinoic acid (RA) has been reported to suppress Th1 responses and enhance Th2 responses. Here, we investigated whether differences in vitamin A metabolism could underlie the differences between C57BL/6 and BALB/c mice, which are reportedly seen as Th1 and Th2 responders, respectively. BALB/c mice were shown to have higher intestinal epithelial expression of RALDH1 (where RALDH is retinaldehyde dehydrogenase), and, consequently, higher RALDH activity in MLN-DCs, leading to an increased ability to induce IgA class switching in B cells. Furthermore, within BALB/c mice, induction of IgA secretion as well as increased accumulation of regulatory T cells (Treg) in the intestinal lamina propria was observed. Additionally, as BALB/c mice are more resistant to dextran sulphate sodium (DSS) induced colitis, mice that lacked vitamin A in their diet had a more severe form of DSS-induced colitis compared to control mice. Therefore, the level of RA production and consequently the degree of RA-mediated signaling is crucial for the efficiency of the mucosal immune system
    corecore