398 research outputs found
Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies
We generalize the Kuramoto model for coupled phase oscillators by allowing
the frequencies to drift in time according to Ornstein-Uhlenbeck dynamics. Such
drifting frequencies were recently measured in cellular populations of
circadian oscillator and inspired our work. Linear stability analysis of the
Fokker-Planck equation for an infinite population is amenable to exact solution
and we show that the incoherent state is unstable passed a critical coupling
strength K_c(\ga, \sigf), where \ga is the inverse characteristic drifting
time and \sigf the asymptotic frequency dispersion. Expectedly agrees
with the noisy Kuramoto model in the large \ga (Schmolukowski) limit but
increases slower as \ga decreases. Asymptotic expansion of the solution for
\ga\to 0 shows that the noiseless Kuramoto model with Gaussian frequency
distribution is recovered in that limit. Thus varying a single parameter allows
to interpolate smoothly between two regimes: one dominated by the frequency
dispersion and the other by phase diffusion.Comment: 5 pages, 5 figures, accepted in Phys. Rev.
Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa—Chromosomal Monophyly and Broad Geographic Distribution
Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d’Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans
Critical Perspective: Named Reactions Discovered and Developed by Women
Named organic reactions. As chemists, we’re all familiar with them: who can forget the Diels−Alder reaction? But how much do we know about the people behind the names? For example, can you identify a reaction named for a woman? How about a reaction discovered or developed by a woman but named for her male adviser? Our attempts to answer these simple questions started us on the journey that led to this Account.
We introduce you to four reactions named for women and nine reactions discovered or developed by women. Using information obtained from the literature and, whenever possible, through interviews with the chemists themselves, their associates, and their advisers, we paint a more detailed picture of these remarkable women and their outstanding accomplishments.
Some of the women you meet in this Account include Irma Goldberg, the only woman unambiguously recognized with her own named reaction. Gertrude Maud Robinson, the wife of Robert Robinson, who collaborated with him on several projects including the Piloty−Robinson pyrrole synthesis. Elizabeth Hardy, the Bryn Mawr graduate student who discovered the Cope rearrangement. Dorothee Felix, a critical member of Albert Eschenmoser’s research lab for over forty years who helped develop both the Eschenmoser−Claisen rearrangement and the Eschenmoser−Tanabe fragmentation. Jennifer Loebach, the University of Illinois undergraduate who was part of the team in Eric Jacobsen’s lab that discovered the Jacobsen−Katsuki epoxidation. Keiko Noda, a graduate student in Tsutomu Katsuki’s lab who also played a key role in the development of the Jacobsen−Katsuki epoxidation. Lydia McKinstry, a postdoc in Andrew Myers’s lab who helped develop the Myers asymmetric alkylation. Rosa Lockwood, a graduate student at Boston College whose sole publication is the discovery of the Nicholas reaction. Kaori Ando, a successful professor in Japan who helped develop the Roush asymmetric alkylation as a postdoc at MIT. Bianka Tchoubar, a critically important member of the organic chemistry community in France who developed the Tiffeneau−Demjanov rearrangement.
The accomplishments of the women in this Account illustrate the key roles women have played in the discovery and development of reactions used daily by organic chemists around the world. These pioneering chemists represent the vanguard of women in the field, and we are confident that many more of the growing number of current and future female organic chemists will be recognized with their own named reactions
Re-Emergence of Crimean-Congo Hemorrhagic Fever Virus in Central Africa
Crimean-Congo hemorrhagic fever virus (CCHFV) is transmitted to humans through tick-bite or contact with infected blood or tissues from livestock, the main vertebrate hosts in a peri-domestic natural cycle. With numerous outbreaks, a high case fatality rate (3%–30%) and a high risk for nosocomial transmission, CCHFV became a public health concern in Europe and Asia. However virus surveillance in Africa is difficult due to the limited sanitary facilities. Especially, CCHFV occurrence in Central Africa is very poorly described and seems highly in contrast with the temperate to dry environments to which the virus is usually associated with. We described a single human infection that occurred in Democratic Republic of the Congo after nearly 50 years of absence. The phylogenetic analysis suggests that CCHFV enzootic circulation in the area is still ongoing despite the absence of notification, and thus reinforces the need for the medical workers and authorities to be aware of the outbreak risk. The source of infection seemed associated with a forest environment while no link with the usual agro-pastoral risk factors could be identified. More accurate ecological data about CCHFV enzootic cycle are required to assess the risk of emergence in developing countries subjected to deforestation
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
Classical Morphology of Plants as an Elementary Instance of Classical Invariant Theory
It has long been known that structural chemistry shows an intriguing correspondence with Classical Invariant Theory (CIT). Under this view, an algebraic binary form of the degree n corresponds to a chemical atom with valence n and each physical molecule or ion has an invariant-theoretic counterpart. This theory was developed using the Aronhold symbolical approach and the symbolical processes of convolution/transvection in CIT was characterized as a potential “accurate morphological method”. However, CIT has not been applied to the formal morphology of living organisms. Based on the morphological interpretation of binary form, as well as the process of convolution/transvection, the First and Second Fundamental Theorems of CIT and the Nullforms of CIT, we show how CIT can be applied to the structure of plants, especially when conceptualized as a series of plant metamers (phytomers). We also show that the weight of the covariant/invariant that describes a morphological structure is a criterion of simplicity and, therefore, we argue that this allows us to formulate a parsimonious method of formal morphology. We demonstrate that the “theory of axilar bud” is the simplest treatment of the grass seedling/embryo. Our interpretations also represent Troll's bauplan of the angiosperms, the principle of variable proportions, morphological misfits, the basic types of stem segmentation, and Goethe's principle of metamorphosis in terms of CIT. Binary forms of different degrees might describe any repeated module of plant organisms. As bacteria, invertebrates, and higher vertebrates are all generally shared a metameric morphology, wider implications of the proposed symmetry between CIT and formal morphology of plants are apparent
Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver
Temporal mapping during a circadian day of binding sites for the BMAL1 transcription factor in mouse liver reveals genome-wide daily rhythms in DNA binding and uncovers output functions that are controlled by the circadian oscillator
Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.
Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 × 10−6, odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10−4). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical R
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
- …