244 research outputs found

    Computational strategies for the accurate thermochemistry and kinetics of gas-phase reactions

    Get PDF
    This PhD thesis focuses on the theoretical and computational modeling of gas phase chemical reactions, with a particular emphasis on astrophysical and atmospherical ones. The ability to accurately determine the rate coefficients of key elementary reactions is deeply connected to the accurate determination of geometrical parameters, vibrational frequencies and, even more importantly, electronic energies and zeropoint energy corrections of reactants, transition states, intermediates and products involved in the chemical reaction, together with a suitable choice of the statistical approach for the rate computation (i.e. the proper transition state theory model). The main factor limiting the accuracy of this process is the computational time requested to reach meaningful results (i.e. reaching subchemical accuracy below 1 kJ mol−1), which increases dramatically with the the size of the system under investigation. For small-sized systems, several nonempirical procedures have been developed and presented in the literature. However, for larger systems the well-known model chemistries are far from being parameter-free since they include some empirical parameters and employ geometries which are not fully reliable for transition states and noncovalent complexes possibly ruling the entrance channels. Based on these premises, this dissertation has been focused on the development of new “cheap” composite schemes, entirely based on the frozen core coupled cluster ansatz including single, double, and (perturbative) triple excitation calculations in conjunction with a triple-zeta quality basis set, including the contributions due to the extrapolation to the complete basis set limit and core-valence effects using second-order Møller- Plesset perturbation theory. For the first time the “cheap” scheme has been extended to explicitly-correlated methods, which have an improved performance with respect to their conventional counterparts. Benchmarks with different sets of state of the art energy barriers, interaction energies and geometrical parameters spanning a wide range of values show that, in the absence of strong multireference contributions, the proposed models outperforms the most well-known model chemistries, reaching a subchemical accuracy without any empirical parameter and with affordable computer times. Besides the composite schemes development efforts, a robust protocol for disclosing the thermochemistry and kinetics of reactions of atmospheric and astrophysical interest, rooted in the so-called ab initio-transition-state-theory-based master equation approach have been thoroughly investigated and validated

    Methanimine as a key precursor of imines in the interstellar medium: the case of propargylimine

    Get PDF
    A gas-phase formation route is proposed for the recently detected propargylimine molecule. In analogy to other imines, such as cyanomethanimine, the addition of a reactive radical (C2_2H in the present case) to methanimine (CH2_2NH}) leads to reaction channels open also in the harsh conditions of the interstellar medium. Three possible isomers can be formed in the CH2H_2NH + C2_2H reaction: Z- and E-propargylimine (Z-,E-PGIM) as well as N-ethynyl-methanimine (N-EMIM). For both PGIM species, the computed global rate coefficient is nearly constant in the 20-300 K temperature range, and of the order of 2-3 ×\times 1010^{-10} cm3^3 molecule1^{-1} s1^{-1}, while that for N-EMIM is about two orders of magnitude smaller. Assuming equal destruction rates for the two isomers, these results imply an abundance ratio for PGIM of [Z]/[E] \sim 1.5, which is only slightly underestimated with respect to the observational datum.Comment: 10 pages, 4 figures, 2 tables. Accepted in ApJ

    Ab Initio and Kinetic Modelling of β\beta-D-xylopyranose Under Fast Pyrolysis Conditions

    Full text link
    Lignocellulosic biomass is an abundant renewable resource that can be upgraded to chemical and fuel products through a range of thermal conversion processes. Fast pyrolysis is a promising technology that uses high temperatures and fast heating rates to convert lignocellulose into bio-oils in high yields in the absence of oxygen. Hemicellulose is one of three major components of lignocellulosic biomass and is a highly branched heteropolymer structure made of pentose, hexose sugars, and sugar acids. In this study, β\beta-D-xylopyranose is proposed as a model structural motif for the essential chemical structure of hemicellulose. The gas-phase pyrolytic reactivity of β\beta-D-xylopyranose is thoroughly investigated using computational strategies rooted in quantum chemistry. In particular, its thermal degradation potential energy surfaces are computed employing Minnesota global hybrid functional M06-2X in conjunction with 6-311++G(d,p) Pople basis set. Electronic energies are further refined by performing DLPNO-CCSD(T)-F12 single point calculations on top of M06-2X geometries using cc-pVTZ-F12 basis set. Key thermodynamic quantities (free energies, barrier heights, enthalpies of formation, and heat capacities) are computed. Rate coefficients for the initial steps of thermal decomposition are computed by means of reaction rate theory. For the first time, a detailed elementary reaction kinetic model for β\beta-D-xylopyranose is developed by utilizing the thermodynamic and kinetic information acquired from the aforementioned calculations. This model specifically targets the initial stages of β\beta-D-xylopyranose pyrolysis, aiming to gain a deeper understanding of its reaction kinetics. This approach establishes a systematic strategy for exploring reactive pathways, evaluating competing parallel reactions, and selectively accepting or discarding pathways based on the analysis.Comment: 37 pages, 7 figures, 5 table

    Ultrathin random copolymer-grafted layers for block copolymer self-assembly

    Get PDF
    Hydroxyl-terminated P(S-r-MMA) random copolymers (RCPs) with molecular weights (Mn) from 1700 to 69000 and a styrene unit fraction of approximately 61% were grafted onto a silicon oxide surface and subsequently used to study the orientation of nanodomains with respect to the substrate, in cylinder-forming PS-b-PMMA block copolymer (BCP) thin films. When the thickness (H) of the grafted layer is greater than 5-6 nm, a perpendicular orientation is always observed because of the efficient decoupling of the BCP film from the polar SiO2 surface. Conversely, if H is less than 5 nm, the critical thickness of the grafted layer, which allows the neutralization of the substrate and promotion of the perpendicular orientation of the nanodomains in the BCP film, is found to depend on the Mn of the RCP. In particular, when Mn = 1700, a 2.0 nm thick grafted layer is sufficient to promote the perpendicular orientation of the PMMA cylinders in the PS-b-PMMA BCP film. A proximity shielding mechanism of the BCP molecules from the polar substrate surface, driven by chain stretching of the grafted RCP molecules, is proposed

    State-of-the-Art Quantum Chemistry Meets Variable Reaction Coordinate Transition State Theory to Solve the Puzzling Case of the H2S + Cl System

    Full text link
    The atmospheric reaction of H2_2S with Cl has been reinvestigated to check if, as previously suggested, only explicit dynamical computations can lead to an accurate evaluation of the reaction rate because of strong recrossing effects and the breakdown of the variational extension of transition state theory. For this reason, the corresponding potential energy surface has been thoroughly investigated, thus leading to an accurate characterization of all stationary points, whose energetics has been computed at the state of the art. To this end, coupled-cluster theory including up to quadruple excitations has been employed, together with the extrapolation to the complete basis set limit and also incorporating core-valence correlation, spin-orbit, and scalar relativistic effects as well as diagonal Born-Oppenheimer corrections. This highly accurate composite scheme has also been paralleled by less expensive yet promising computational approaches. Moving to kinetics, variational transition state theory and its variable reaction coordinate extension for barrierless steps have been exploited, thus obtaining a reaction rate constant (8.16 x 1011^{-11} cm3^3 molecule1^{-1} s1^{-1} at 300 K and 1 atm) in remarkable agreement with the experimental counterpart. Therefore, contrary to previous claims, there is no need to invoke any failure of the transition state theory, provided that sufficiently accurate quantum-chemical computations are performed. The investigation of the puzzling case of the H2_2S + Cl system allowed us to present a robust approach for disclosing the thermochemistry and kinetics of reactions of atmospheric and astrophysical interest.Comment: 49 pages, 7 figures, published online in JCT

    Search for heavy neutral lepton production in K+ decays

    Get PDF
    A search for heavy neutral lepton production in K + decays using a data sample collected with a minimum bias trigger by the NA62 experiment at CERN in 2015 is reported. Upper limits at the 10−7 to 10−6 level are established on the elements of the extended neutrino mixing matrix |Ue4| 2 and |Uμ4| 2 for heavy neutral lepton mass in the ranges 170–448 MeV/c2 and 250–373 MeV/c2, respectively. This improves on the previous limits from HNL production searches over the whole mass range considered for |Ue4|2 and above 300 MeV/c2 for |Uμ4|2

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Measurement of the very rare K+π+ννˉK^+ \to \pi^+ \nu \bar\nu decay

    Get PDF
    The decay K+→π+νν¯ , with a very precisely predicted branching ratio of less than 10−10 , is among the best processes to reveal indirect effects of new physics. The NA62 experiment at CERN SPS is designed to study the K+→π+νν¯ decay and to measure its branching ratio using a decay-in-flight technique. NA62 took data in 2016, 2017 and 2018, reaching the sensitivity of the Standard Model for the K+→π+νν¯ decay by the analysis of the 2016 and 2017 data, and providing the most precise measurement of the branching ratio to date by the analysis of the 2018 data. This measurement is also used to set limits on BR(K+→π+X ), where X is a scalar or pseudo-scalar particle. The final result of the BR(K+→π+νν¯ ) measurement and its interpretation in terms of the K+→π+X decay from the analysis of the full 2016-2018 data set is presented, and future plans and prospects are reviewed

    Global stability analysis of a 90°-bend pipe flow

    No full text
    The present work investigates the stability properties of the flow in a 90°-bend pipe with curvature δ=R/Rc=1/3, with R being the radius of the cross-section of the pipe and Rc the radius of curvature at the pipe centreline. Direct numerical simulations (DNS) for values of the bulk Reynolds number Reb=UbD/ν between 2000 and 3000 are performed. The bulk Reynolds number is based on the bulk velocity Ub, the pipe diameter D, and the kinematic viscosity ν. The flow is found to be steady for Reb⩽2500, with two main pairs of symmetric, counter-rotating vortices in the section of the pipe downstream of the bend. The presence of two recirculation regions is detected inside the bend: one on the outer wall and the other on the inner side. For Reb⩾2550, the flow exhibits a periodic behaviour, oscillating with a fundamental non-dimensional frequency St=fD/Ub=0.23. A global stability analysis is performed in order to determine the cause of the transition from the steady to the periodic regime. The spectrum of the linearised Navier-Stokes operator reveals a pair of complex conjugate eigenvalues with positive real part, hence the transition is ascribed to a Hopf bifurcation occurring at Reb,cr≈2531, a value much lower than the critical Reynolds number for the flow in a torus with the same curvature. The velocity components of the unstable direct and adjoint eigenmodes are investigated, and they display a large spatial separation, most likely due to the non-normality of the linearised Navier-Stokes operator. Thus, the core of the instability, also known in the literature as the wavemaker, is sought performing an analysis of the structural sensitivity of the unstable eigenmode to spatially localised feedbacks. The region located 15° downstream of the bend inlet, on the outer wall, is the most receptive to this kind of perturbations, and thus corresponds to where the instability originates. Since this region coincides with the outer-wall separation bubble, it is concluded that the instability is linked to the strong shear by the backflow phenomena. The present results are relevant for technical applications where bent pipes are frequently used, and their stability properties have hitherto not been studied.ISSN:0142-727XISSN:1879-227
    corecore