116 research outputs found

    Male Choice in the Stream-Anadromous Stickleback Complex

    Get PDF
    Studies of mating preferences and pre-mating reproductive isolation have often focused on females, but the potential importance of male preferences is increasingly appreciated. We investigated male behavior in the context of reproductive isolation between divergent anadromous and stream-resident populations of threespine stickleback, Gasterosteus aculeatus, using size-manipulated females of both ecotypes. Specifically, we asked if male courtship preferences are present, and if they are based on relative body size, non-size aspects of ecotype, or other traits. Because male behaviors were correlated with each other, we conducted a principal components analysis on the correlations and ran subsequent analyses on the principal components. The two male ecotypes differed in overall behavioral frequencies, with stream-resident males exhibiting consistently more vigorous and positive courtship than anadromous males, and an otherwise aggressive behavior playing a more positive role in anadromous than stream-resident courtship. We observed more vigorous courtship toward smaller females by (relatively small) stream-resident males and the reverse pattern for (relatively large) anadromous males. Thus size-assortative male courtship preferences may contribute to reproductive isolation in this system, although preferences are far from absolute. We found little indication of males responding preferentially to females of their own ecotype independent of body size

    Disparities in healthy food zoning, farmers’ market availability, and fruit and vegetable consumption among North Carolina residents

    Get PDF
    Background Context and purpose of the study. To examine (1) associations between county-level zoning to support farmers’ market placement and county-level farmers’ market availability, rural/urban designation, percent African American residents, and percent of residents living below poverty and (2) individual-level associations between zoning to support farmers’ markets; fruit and vegetable consumption and body mass index (BMI) among a random sample of residents of six North Carolina (NC) counties. Methods Zoning ordinances were scored to indicate supportiveness for healthy food outlets. Number of farmers’ markets (per capita) was obtained from the NC-Community Transformation Grant Project Fruit and Vegetable Outlet Inventory (2013). County-level census data on rural/urban status, percent African American, and percent poverty were obtained. For data on farmers’ market shopping, fruit and vegetable consumption, and BMI, trained interviewers conducted a random digit dial telephone survey of residents of six NC counties (3 urban and 3 rural). Pearson correlation coefficients and multilevel linear regression models were used to examine county-level and individual-level associations between zoning supportiveness, farmers’ market availability, and fruit and vegetable consumption and BMI. Results At the county-level, healthier food zoning was greater in more urban areas and areas with less poverty. At the individual-level, self-reported fruit and vegetable consumption was associated with healthier food zoning. Conclusions Disparities in zoning to promote healthy eating should be further examined, and future studies should assess whether amending zoning ordinances will lead to greater availability of healthy foods and changes in dietary behavior and health outcomes.ECU Open Access Publishing Support Fun

    (Micro)evolutionary changes and the evolutionary potential of bird migration

    No full text
    Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here

    Divergence in Sex Steroid Hormone Signaling between Sympatric Species of Japanese Threespine Stickleback

    Get PDF
    Sex steroids mediate the expression of sexually dimorphic or sex-specific traits that are important both for mate choice within species and for behavioral isolation between species. We investigated divergence in sex steroid signaling between two sympatric species of threespine stickleback (Gasterosteus aculeatus): the Japan Sea form and the Pacific Ocean form. These sympatric forms diverge in both male display traits and female mate choice behaviors, which together contribute to asymmetric behavioral isolation in sympatry. Here, we found that plasma levels of testosterone and 17β-estradiol differed between spawning females of the two sympatric forms. Transcript levels of follicle-stimulating hormone-β (FSHβ) gene were also higher in the pituitary gland of spawning Japan Sea females than in the pituitary gland of spawning Pacific Ocean females. By contrast, none of the sex steroids examined were significantly different between nesting males of the two forms. However, combining the plasma sex steroid data with testis transcriptome data suggested that the efficiency of the conversion of testosterone into 11-ketotestosterone has likely diverged between forms. Within forms, plasma testosterone levels in males were significantly correlated with male body size, a trait important for female mate choice in the two sympatric species. These results demonstrate that substantial divergence in sex steroid signaling can occur between incipient sympatric species. We suggest that investigation of the genetic and ecological mechanisms underlying divergence in hormonal signaling between incipient sympatric species will provide a better understanding of the mechanisms of speciation in animals

    MicroRNA expression as risk biomarker of breast cancer metastasis : a pilot retrospective case-cohort study

    Get PDF
    Background: MicroRNAs (miRNAs) are small, non-coding RNA molecules involved in post-transcriptional gene regulation and have recently been shown to play a role in cancer metastasis. In solid tumors, especially breast cancer, alterations in miRNA expression contribute to cancer pathogenesis, including metastasis. Considering the emerging role of miRNAs in metastasis, the identification of predictive markers is necessary to further the understanding of stage-specific breast cancer development. This is a retrospective analysis that aimed to identify molecular biomarkers related to distant breast cancer metastasis development. Methods: A retrospective case cohort study was performed in 64 breast cancer patients treated during the period from 1998-2001. The case group (n = 29) consisted of patients with a poor prognosis who presented with breast cancer recurrence or metastasis during follow up. The control group (n = 35) consisted of patients with a good prognosis who did not develop breast cancer recurrence or metastasis. These patient groups were stratified according to TNM clinical stage (CS) I, II and III, and the main clinical features of the patients were homogeneous. MicroRNA profiling was performed and biomarkers related to metastatic were identified independent of clinical stage. Finally, a hazard risk analysis of these biomarkers was performed to evaluate their relation to metastatic potential. Results: MiRNA expression profiling identified several miRNAs that were both specific and shared across all clinical stages (p <= 0.05). Among these, we identified miRNAs previously associated with cell motility (let-7 family) and distant metastasis (hsa-miR-21). In addition, hsa-miR-494 and hsa-miR-21 were deregulated in metastatic cases of CSI and CSII. Furthermore, metastatic miRNAs shared across all clinical stages did not present high sensitivity and specificity when compared to specific-CS miRNAs. Between them, hsa-miR-183 was the most significative of CSII, which miRNAs combination for CSII (hsa-miR-494, hsa-miR-183 and hsa-miR-21) was significant and were a more effective risk marker compared to the single miRNAs. Conclusions: Women with metastatic breast cancer, especially CSII, presented up-regulated levels of miR-183, miR-494 and miR-21, which were associated with a poor prognosis. These miRNAs therefore represent new risk biomarkers of breast cancer metastasis and may be useful for future targeted therapies.We thank the Researcher Support Center of Barretos Cancer Hospital, especially the statistician Zanardo C. for assisting in the statistical analysis.This study received financial support from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Fapesp, Proc: 10/ 16796-0, Sao Paulo, Brazil)

    Conspicuous Female Ornamentation and Tests of Male Mate Preference in Threespine Sticklebacks (Gasterosteus aculeatus)

    Get PDF
    Sexual selection drives the evolution of exaggerated male ornaments in many animal species. Female ornamentation is now acknowledged also to be common but is generally less well understood. One example is the recently documented red female throat coloration in some threespine stickleback (Gasterosteus aculeatus) populations. Although female sticklebacks often exhibit a preference for red male throat coloration, the possibility of sexual selection on female coloration has been little studied. Using sequential and simultaneous mate choice trials, we examined male mate preferences for female throat color, as well as pelvic spine color and standard length, using wild-captured threespine sticklebacks from the Little Campbell River, British Columbia. In a multivariate analysis, we found no evidence for a population-level mate preference in males, suggesting the absence of directional sexual selection on these traits arising from male mate choice. Significant variation was detected among males in their preference functions, but this appeared to arise from differences in their mean responsiveness across mating trials and not from variation in the strength (i.e., slope) of their preference, suggesting the absence of individual-level preferences as well. When presented with conspecific intruder males, male response decreased as intruder red throat coloration increased, suggesting that males can discriminate color and other aspects of phenotype in our experiment and that males may use these traits in intrasexual interactions. The results presented here are the first to explicitly address male preference for female throat color in threespine sticklebacks.Open Access Publishing Fun

    Little evidence for a selective advantage of armour-reduced threespined stickleback individuals in an invertebrate predation experiment

    Get PDF
    The repeated colonization of freshwater habitats by the ancestrally marine threespined stickleback Gasterosteus aculeatus has been associated with many instances of parallel reduction in armour traits, most notably number of lateral plates. The change in predation regime from marine systems, dominated by gape-limited predators such as piscivorous fishes, to freshwater habitats where grappling invertebrate predators such as insect larvae can dominate the predation regime, has been hypothesized as a driving force. Here we experimentally test the hypothesis that stickleback with reduced armour possess a selective advantage in the face of predation by invertebrates, using a natural population of stickleback that is highly polymorphic for armour traits and a common invertebrate predator from the same location. Our results provide no compelling evidence for selection in this particular predator–prey interaction. We suggest that the postulated selective advantage of low armour in the face of invertebrate predation may not be universal

    A gene-based SNP resource and linkage map for the copepod Tigriopus californicus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. <it>Tigriopus californicus </it>is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for <it>T. californicus--</it>a first for copepods.</p> <p>Results</p> <p>One hundred and ninety Single Nucleotide Polymorphisms (SNPs) were used to genotype our mapping population of 250 F<sub>2 </sub>larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of <it>T. californicus</it>. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of <it>T. californicus</it>. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between <it>T. californicus </it>and the honeybee <it>Apis mellifera</it>, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda.</p> <p>Conclusions</p> <p>Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of <it>T. californicus</it>, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are currently under development.</p

    Does practicing hatha yoga satisfy recommendations for intensity of physical activity which improves and maintains health and cardiovascular fitness?

    Get PDF
    Background: Little is known about the metabolic and heart rate responses to a typical hatha yoga session. The purposes of this study were 1) to determine whether a typical yoga practice using various postures meets the current recommendations for levels of physical activity required to improve and maintain health and cardiovascular fitness; 2) to determine the reliability of metabolic costs of yoga across sessions; 3) to compare the metabolic costs of yoga practice to those of treadmill walking. Methods: In this observational study, 20 intermediate-to-advanced level yoga practitioners, age 31.4 ± 8.3 years, performed an exercise routine inside a human respiratory chamber (indirect calorimeter) while wearing heart rate monitors. The exercise routine consisted of 30 minutes of sitting, 56 minutes of beginner-level hatha yoga administered by video, and 10 minutes of treadmill walking at 3.2 and 4.8 kph each. Measures were mean oxygen consumption (VO2), heart rate (HR), percentage predicted maximal heart rate (%MHR), metabolic equivalents (METs), and energy expenditure (kcal). Seven subjects repeated the protocol so that measurement reliability could be established. Results: Mean values across the entire yoga session for VO2, HR, %MHR, METs, and energy/min were 0.6 L/kg/min; 93.2 beats/min; 49.4%; 2.5; and 3.2 kcal/min; respectively. Results of the ICCs (2,1) for mean values across the entire yoga session for kcal, METs, and %MHR were 0.979 and 0.973, and 0.865, respectively. Conclusion: Metabolic costs of yoga averaged across the entire session represent low levels of physical activity, are similar to walking on a treadmill at 3.2 kph, and do not meet recommendations for levels of physical activity for improving or maintaining health or cardiovascular fitness. Yoga practice incorporating sun salutation postures exceeding the minimum bout of 10 minutes may contribute some portion of sufficiently intense physical activity to improve cardio-respiratory fitness in unfit or sedentary individuals. The measurement of energy expenditure across yoga sessions is highly reliable

    Assessing the congruence of thermal niche estimations derived from distribution and physiological data. A test using diving beetles.

    Get PDF
    A basic aim of ecology is to understand the determinants of organismal distribution, the niche concept and species distribution models providing key frameworks to approach the problem. As temperature is one of the most important factors affecting species distribution, the estimation of thermal limits is crucially important for inferring range constraints. It is expectable that thermal physiology data derived from laboratory experiments and species' occurrences may express different aspects of the species' niche. However, there is no study systematically testing this prediction in a given taxonomic group while controlling by potential phylogenetic inertia. We estimate the thermal niches of twelve Palaearctic diving beetles species using physiological data derived from experimental analyses in order to examine the extent to which these coincided with those estimated from distribution models based on observed occurrences. We found that thermal niche estimates derived from both approaches lack general congruence, and these results were similar before and after controlling by phylogeny. The congruence between potential distributions obtained from the two different procedures was also explored, and we found again that the percentage of agreement were not very high (~60%). We confirm that both thermal niche estimates derived from geographical and physiological data are likely to misrepresent the true range of climatic variation that these diving beetles are able to tolerate, and so these procedures could be considered as incomplete but complementary estimations of an inaccessible reality
    corecore