588 research outputs found

    Nuclear reactions in the Sun after SNO and KamLAND

    Full text link
    In this brief review we discuss the possibility of studying the solar interior by means of neutrinos, in the light of the enormous progress of neutrino physics in the last few years. The temperature near the solar center can be extracted from Boron neutrino experiments as: T=(1.57±0.01)107K T= (1.57 \pm 0.01) 10^7 K. The energy production rate in the Sun from pp chain and CNO cycle, as deduced from neutrino measurements, agrees with the observed solar luminosity to about twenty per cent. Progress in extracting astrophysical information from solar neutrinos requires improvement in the measurements of 3He+^3He+ \\4He7Be+γ^4He \to ^7Be+\gamma and p+14N15O+γp+^{14}N \to ^{15}O+ \gamma.Comment: To appear in the Proceedings of Beyond the Desert '03, Fourth International Conference on Physics Beyond the Standard Model, Schloss Ringberg, Germany, June 9-14, 200

    Effects of resistance training protocols on nonlinear analysis of heart rate variability in metabolic syndrome

    Get PDF
    Besides some non-linear measurements used in autonomic modulation (AM) analysis can be suitable using short term series, they usually depend on long time-series of data. To transpose this, chaotic global methods were formulated, putting together heart rate variability (HRV) linear methods. Chaos provides information about vegetative function control related to cardiovascular risks. Applying this method to investigate the complexity of the health condition after resistance training protocols, used as a therapeutic intervention, on AM in metabolic syndrome individuals (MetS) is important. This study aimed to compare the effects of two resistance training programs (conventional vs. functional) in MetS using nonlinear analysis of AM. MetS subjects (n=50), both sexes, aged 40 to 60 years were randomized between two programs. Also, there was a control group (n=12). Both groups performed 30 sessions of training. AM was accessed in chaos domain by chaotic global techniques. The main results showed that both resistance training, functional and conventional, increased chaos when compared to the control group, respectively observed by CFP1 (13.9±17.9 vs. 12.8±14.4 vs. -2.23±7.96; p≤0.05) and CFP3 (15.4±19.8 vs. 21.9±13.2 vs. -4.82±11.4; p≤0.05). In addition, 30 sessions of both resistance programs increase chaos, and nonlinear analysis enables discriminates AM after interventions when compared to control group

    SPECULOOS exoplanet search and its prototype on TRAPPIST

    Full text link
    One of the most significant goals of modern science is establishing whether life exists around other suns. The most direct path towards its achievement is the detection and atmospheric characterization of terrestrial exoplanets with potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs), i.e. very-low-mass stars and brown dwarfs with effective temperatures lower than 2700 K, represent a unique opportunity to reach this goal within the next decade. The potential of the transit method for detecting potentially habitable Earth-sized planets around these objects is drastically increased compared to Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby UCD would be amenable for a thorough atmospheric characterization, including the search for possible biosignatures, with near-future facilities such as the James Webb Space Telescope. In this chapter, we first describe the physical properties of UCDs as well as the unique potential they offer for the detection of potentially habitable Earth-sized planets suitable for atmospheric characterization. Then, we present the SPECULOOS ground-based transit survey, that will search for Earth-sized planets transiting the nearest UCDs, as well as its prototype survey on the TRAPPIST telescopes. We conclude by discussing the prospects offered by the recent detection by this prototype survey of a system of seven temperate Earth-sized planets transiting a nearby UCD, TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H. Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure

    Radiative Transfer for Exoplanet Atmospheres

    Full text link
    Remote sensing of the atmospheres of distant worlds motivates a firm understanding of radiative transfer. In this review, we provide a pedagogical cookbook that describes the principal ingredients needed to perform a radiative transfer calculation and predict the spectrum of an exoplanet atmosphere, including solving the radiative transfer equation, calculating opacities (and chemistry), iterating for radiative equilibrium (or not), and adapting the output of the calculations to the astronomical observations. A review of the state of the art is performed, focusing on selected milestone papers. Outstanding issues, including the need to understand aerosols or clouds and elucidating the assumptions and caveats behind inversion methods, are discussed. A checklist is provided to assist referees/reviewers in their scrutiny of works involving radiative transfer. A table summarizing the methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in references, main text unchange

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    Selective Targeting of Tumorigenic Cancer Cell Lines by Microtubule Inhibitors

    Get PDF
    For anticancer drug therapy, it is critical to kill those cells with highest tumorigenic potential, even when they comprise a relatively small fraction of the overall tumor cell population. We have used the established NCI/DTP 60 cell line growth inhibition assay as a platform for exploring the relationship between chemical structure and growth inhibition in both tumorigenic and non-tumorigenic cancer cell lines. Using experimental measurements of “take rate” in ectopic implants as a proxy for tumorigenic potential, we identified eight chemical agents that appear to strongly and selectively inhibit the growth of the most tumorigenic cell lines. Biochemical assay data and structure-activity relationships indicate that these compounds act by inhibiting tubulin polymerization. Yet, their activity against tumorigenic cell lines is more selective than that of the other microtubule inhibitors in clinical use. Biochemical differences in the tubulin subunits that make up microtubules, or differences in the function of microtubules in mitotic spindle assembly or cell division may be associated with the selectivity of these compounds

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Different Molecular Signatures in Magnetic Resonance Imaging-Staged Facioscapulohumeral Muscular Dystrophy Muscles

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies and is characterized by a non-conventional genetic mechanism activated by pathogenic D4Z4 repeat contractions. By muscle Magnetic Resonance Imaging (MRI) we observed that T2-short tau inversion recovery (T2-STIR) sequences identify two different conditions in which each muscle can be found before the irreversible dystrophic alteration, marked as T1-weighted sequence hyperintensity, takes place. We studied these conditions in order to obtain further information on the molecular mechanisms involved in the selective wasting of single muscles or muscle groups in this disease

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Investigating the dynamics of surface-immobilized DNA nanomachines

    Get PDF
    Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors
    corecore