787 research outputs found

    Latent HIV in primary T lymphocytes is unresponsive to histone deacetylase inhibitors

    Get PDF
    Recently, there is considerable interest in the field of anti-HIV therapy to identify and develop chromatin-modifying histone deacetylase (HDAC) inhibitors that can effectively reactivate latent HIV in patients. The hope is that this would help eliminate cells harboring latent HIV and achieve an eventual cure of the virus. However, how effectively these drugs can stimulate latent HIVs in quiescent primary CD4 T cells, despite their relevant potencies demonstrated in cell line models of HIV latency, is not clear. Here, we show that the HDAC inhibitors valproic acid (VPA) and trichostatin A (TSA) are unable to reactivate HIV in latently infected primary CD4 T cells generated in the H80 co-culture system. This raises a concern that the drugs inhibiting HDAC function alone might not be sufficient for stimulating latent HIV in resting CD4 T cells in patients and not achieve any anticipated reduction in the pool of latent reservoirs

    All-optical mode-group multiplexed transmission over a graded-index ring-core fiber with single radial mode

    Get PDF
    We present a design of graded-index ring-core fiber (GI-RCF) supporting 3 linearly polarized (LP) mode-groups (i.e. LP01_{01}, LP11_{11} and LP21_{21}) with a single radial index of one for mode-division multiplexed (MDM) transmission. Reconfigurable spatial light modulator (SLM) based spatial (mode) (de)multiplexers are used to systematically characterize spatial/temporal modal properties of the GI-RCF. We also demonstrate all-optical mode-group multiplexed transmissions over a 360m fabricated GI-RCF without using multiple-input multiple-output digital signal processing (MIMO DSP).The UK Engineering and Physical Sciences Research Council (EPSRC) grant: EP/J009369/1 (COMIMO); a Cambridge University EPSRC Impact Acceleration Account (IAA) follow-on grant

    Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells

    Get PDF
    We evaluated the mechanism of capsaicin-mediated ROS generation in pancreatic cancer cells. The generation of ROS was about 4–6 fold more as compared to control and as early as 1 h after capsaicin treatment in BxPC-3 and AsPC-1 cells but not in normal HPDE-6 cells. The generation of ROS was inhibited by catalase and EUK-134. To delineate the mechanism of ROS generation, enzymatic activities of mitochondrial complex-I and complex-III were determined in the pure mitochondria. Our results shows that capsaicin inhibits about 2.5–9% and 5–20% of complex-I activity and 8–75% of complex-III activity in BxPC-3 and AsPC-1 cells respectively, which was attenuable by SOD, catalase and EUK-134. On the other hand, capsaicin treatment failed to inhibit complex-I or complex-III activities in normal HPDE-6 cells. The ATP levels were drastically suppressed by capsaicin treatment in both BxPC-3 and AsPC-1 cells and attenuated by catalase or EUK-134. Oxidation of mitochondria-specific cardiolipin was substantially higher in capsaicin treated cells. BxPC-3 derived ρ0 cells, which lack mitochondrial DNA, were completely resistant to capsaicin mediated ROS generation and apoptosis. Our results reveal that the release of cytochrome c and cleavage of both caspase-9 and caspase-3 due to disruption of mitochondrial membrane potential were significantly blocked by catalase and EUK-134 in BxPC-3 cells. Our results further demonstrate that capsaicin treatment not only inhibit the enzymatic activity and expression of SOD, catalase and glutathione peroxidase but also reduce glutathione level. Over-expression of catalase by transient transfection protected the cells from capsaicin-mediated ROS generation and apoptosis. Furthermore, tumors from mice orally fed with 2.5 mg/kg capsaicin show decreased SOD activity and an increase in GSSG/GSH levels as compared to controls. Taken together, our results suggest the involvement of mitochondrial complex-I and III in capsaicin-mediated ROS generation and decrease in antioxidant levels resulting in severe mitochondrial damage leading to apoptosis in pancreatic cancer cells

    Postnatal Growth after Intrauterine Growth Restriction Alters Central Leptin Signal and Energy Homeostasis

    Get PDF
    Intrauterine growth restriction (IUGR) is closely linked with metabolic diseases, appetite disorders and obesity at adulthood. Leptin, a major adipokine secreted by adipose tissue, circulates in direct proportion to body fat stores, enters the brain and regulates food intake and energy expenditure. Deficient leptin neuronal signalling favours weight gain by affecting central homeostatic circuitry. The aim of this study was to determine if leptin resistance was programmed by perinatal nutritional environment and to decipher potential cellular mechanisms underneath

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Deep Molecular Characterization of HIV-1 Dynamics under Suppressive HAART

    Get PDF
    In order to design strategies for eradication of HIV-1 from infected individuals, detailed insight into the HIV-1 reservoirs that persist in patients on suppressive antiretroviral therapy (ART) is required. In this regard, most studies have focused on integrated (proviral) HIV-1 DNA forms in cells circulating in blood. However, the majority of proviral DNA is replication-defective and archival, and as such, has limited ability to reveal the dynamics of the viral population that persists in patients on suppressive ART. In contrast, extrachromosomal (episomal) viral DNA is labile and as a consequence is a better surrogate for recent infection events and is able to inform on the extent to which residual replication contributes to viral reservoir maintenance. To gain insight into the diversity and compartmentalization of HIV-1 under suppressive ART, we extensively analyzed longitudinal peripheral blood mononuclear cells (PBMC) samples by deep sequencing of episomal and integrated HIV-1 DNA from patients undergoing raltegravir intensification. Reverse-transcriptase genes selectively amplified from episomal and proviral HIV-1 DNA were analyzed by deep sequencing 0, 2, 4, 12, 24 and 48 weeks after raltegravir intensification. We used maximum likelihood phylogenies and statistical tests (AMOVA and Slatkin-Maddison (SM)) in order to determine molecular compartmentalization. We observed low molecular variance (mean variability ≤0.042). Although phylogenies showed that both DNA forms were intermingled within the phylogenetic tree, we found a statistically significant compartmentalization between episomal and proviral DNA samples (P<10−6 AMOVA test; P = 0.001 SM test), suggesting that they belong to different viral populations. In addition, longitudinal analysis of episomal and proviral DNA by phylogeny and AMOVA showed signs of non-chronological temporal compartmentalization (all comparisons P<10−6) suggesting that episomal and proviral DNA forms originated from different anatomical compartments. Collectively, this suggests the presence of a chronic viral reservoir in which there is stochastic release of infectious virus and in which there are limited rounds of de novo infection. This could be explained by the existence of different reservoirs with unique pharmacological accessibility properties, which will require strategies that improve drug penetration/retention within these reservoirs in order to minimise maintenance of the viral reservoir by de novo infection

    Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity

    Get PDF
    Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavone with putative ability to prevent cancer and cardiovascular diseases. Its metabolism was evaluated in rats and human. Rats received quercetin via the intravenous (i.v.) route and metabolites were isolated from the plasma, urine and bile. Analysis was by high-performance liquid chromatography and confirmation of species identity was achieved by mass spectrometry. Quercetin and isorhamnetin, the 3′-O-methyl analogue, were found in both the plasma and urine. In addition, several polar peaks were characterised as sulphated and glucuronidated conjugates of quercetin and isorhamnetin. Extension of the metabolism studies to a cancer patient who had received quercetin as an i.v. bolus showed that (Quercetin removed) isorhamnetin and quercetin 3′-O-sulphate were major plasma metabolites. As a catechol, quercetin can potentially be converted to a quinone and subsequently conjugated with glutathione (GSH). Oxidation of quercetin with mushroom tyrosinase in the presence of GSH furnished GSH conjugates of quercetin, two mono- and one bis-substituted conjugates. However, these species were not found in biomatrices in rats treated with quercetin. As cyclo-oxygenase-2 (COX-2) expression is mechanistically linked to carcinogenesis, we examined whether quercetin and its metabolites can inhibit COX-2 in a human colorectal cancer cell line (HCA-7). Isorhamnetin and its 4′-isomer tamarixetin were potent inhibitors, reflected in a 90% decrease in prostaglandin E-2 (PGE-2) levels, a marker of COX-2 activity. Quercetin was less effective, with a 50% decline. Quercetin 3- and 7-O-sulphate had no effect on PGE-2. The results indicate that quercetin may exert its pharmacological effects, at least in part, via its metabolites
    corecore