787 research outputs found

    The end of the unique myocardial band: Part I. Anatomical considerations

    Get PDF
    The concept of the ‘unique myocardial band’, which proposes that the ventricular myocardial cone is arranged like skeletal muscle, provides an attractive framework for understanding haemodynamics. The original idea was developed by Francisco Torrent-Guasp. Using boiled hearts and blunt dissection, Torrent-Guasp created a single band of ventricular myocardium extending from the pulmonary trunk to the aortic root, with the band thus constructed encircling both ventricular cavities. Cooked hearts can, however, be dissected in many ways. In this review, we show that the band does not exist as an anatomical entity with defined borders. On the contrary, the ventricular cardiomyocytes are aggregated end to end and by their branching produce an intricate meshwork. Across the thickness of the left ventricular wall, the chains of cardiomyocytes exhibit a gradually changing helical angle, with a circumferential zone formed in the middle. There is no abrupt change in helical angle, as could be expected if the wall was constructed of opposing limbs of a single wrapped band, nor does the long axis of the cardiomyocytes consistently match with the long axis of the unique myocardial band. There are, furthermore, no connective tissue structures that could be considered to demarcate its purported boundaries. The unique myocardial band should be consistent with evolution, and although the ventricular wall of fish and reptiles has one or several distinct layers, a single band is not found. In 1965, Lev and Simpkins cautioned that the ventricular muscle mass of a cooked heart can be dissected almost at the whim of the anatomist. We suggest that the unique myocardial band should have ended there

    Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone.

    Get PDF
    Background: The anatomical substrate for the mid-mural ventricular hyperechogenic zone remains uncertain, but it may represent no more than ultrasound reflected from cardiomyocytes orientated orthogonally to the ultrasonic beam. We sought to ascertain the relationship between the echogenic zone and the orientation of the cardiomyocytes. Methods: We used 3D echocardiography, diffusion tensor imaging, and microcomputed tomography to analyze the location and orientation of cardiomyocytes within the echogenic zone. Results: We demonstrated that visualization of the echogenic zone is dependent on the position of the transducer and is most clearly seen from the apical window. Diffusion tensor imaging and microcomputed tomography show that the echogenic zone seen from the apical window corresponds to the position of the circumferentially orientated cardiomyocytes. An oblique band seen in the parasternal view relates to cardiomyocytes orientated orthogonally to the ultrasonic beam. Conclusions: The mid-mural ventricular hyperechogenic zone represents reflected ultrasound from cardiomyocytes aligned orthogonal to the ultrasonic beam. The echogenic zone does not represent a space, a connective tissue sheet, a boundary between ascending and descending limbs of a hypothetical helical ventricular myocardial band, nor an abrupt change in cardiomyocyte orientation

    Co-design of a personalised digital intervention to improve vegetable intake in adults living in Australian rural communities

    Get PDF
    \ua9 2024, The Author(s). Background: Diets low in vegetables are a main contributor to the health burden experienced by Australians living in rural communities. Given the ubiquity of smartphones and access to the Internet, digital interventions may offer an accessible delivery model for a dietary intervention in rural communities. However, no digital interventions to address low vegetable intake have been co-designed with adults living in rural areas. This paper describes the co-design of a digital intervention to improve vegetable intake with rural community members and research partners. Methods: Active participants in the co-design process were adults ≄ 18 years living in three rural Australian communities (total n = 57) and research partners (n = 4) representing three local rural governments and one peak non-government health organisation. An iterative co-design process was undertaken to understand the needs (pre-design phase) and ideas (generative phase) of the target population. Eight online workshops and a community survey were conducted between July and December 2021. The MoSCoW prioritisation method was used to help participants identify the ‘Must-have, Should-have, Could-have, and Won’t-have or will not have right now’ features and functions of the digital intervention. Workshops were transcribed and inductively analysed using NVivo. Convergent and divergent themes were identified between the workshops and community survey to identify how to implement the digital intervention in the community. Results: Consensus was reached on a concept for a digital intervention that addressed individual and food environment barriers to vegetable intake, specific to rural communities. Implementation recommendations centred on (i) food literacy approaches to improve skills via access to vegetable-rich recipes and healthy eating resources, (ii) access to personalisation options and behaviour change support, and (iii) improving the community food environment by providing information on and access to local food initiatives. Conclusions: Rural-dwelling adults expressed preferences for personalised intervention features that can enhance food literacy and engagement with community food environments. This research will inform the development of the prototyping (evaluation phase) and feasibility testing (post-design phase) of this intervention

    Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone.

    Get PDF
    BACKGROUND: The anatomical substrate for the mid-mural ventricular hyperechogenic zone remains uncertain, but it may represent no more than ultrasound reflected from cardiomyocytes orientated orthogonally to the ultrasonic beam. We sought to ascertain the relationship between the echogenic zone and the orientation of the cardiomyocytes. METHODS: We used 3D echocardiography, diffusion tensor imaging, and microcomputed tomography to analyze the location and orientation of cardiomyocytes within the echogenic zone. RESULTS: We demonstrated that visualization of the echogenic zone is dependent on the position of the transducer and is most clearly seen from the apical window. Diffusion tensor imaging and microcomputed tomography show that the echogenic zone seen from the apical window corresponds to the position of the circumferentially orientated cardiomyocytes. An oblique band seen in the parasternal view relates to cardiomyocytes orientated orthogonally to the ultrasonic beam. CONCLUSIONS: The mid-mural ventricular hyperechogenic zone represents reflected ultrasound from cardiomyocytes aligned orthogonal to the ultrasonic beam. The echogenic zone does not represent a space, a connective tissue sheet, a boundary between ascending and descending limbs of a hypothetical helical ventricular myocardial band, nor an abrupt change in cardiomyocyte orientation

    Revising the hygroscopicity of inorganic sea salt particles

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth's radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8-15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of Îșs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models.P.Z. was partially financed by an Advanced Postdoc.Mobility fellowship of the Swiss National Science Foundation (grant no. P300P2_147776). M.E.S., C.L. and I.R. were financed by the Nordic Center of Excellence on Cryosphere-Atmosphere-Cloud-Climate-Interactions (NCoE CRAICC) and the Swedish Research Council (Vetenskapsradet). O.V. and A.V. were supported by the Academy of Finland Centre of Excellence (grant no. 272041) and The Doctoral School of the University of Eastern Finland. J.C.C. and M.G. received financial support from the European Research Commission via the ERC grant ERC-CoG 615922-BLACARAT. A.N. acknowledges support from a Georgia Power Scholar chair and a Cullen-Peck faculty fellowship. S.B. and M.M.-F. acknowledge funding by the Swiss National Science Foundation (grant no. 200020_146760/1). I. Tegen (TROPOS, Germany) is acknowledged for providing help with the sea spray source functions. We thank D. Eklöf and Z. Bacsik from the Department of Materials and Environmental Chemistry at Stockholm University for their assistance in the pycnometre and Fourier transform infrared spectrometer measurements. The ECHAM-HAMMOZ model is developed by a consortium composed of ETH Zurich, Max Planck Institut fĂŒr Meteorologie, Forschungszentrum JĂŒlich, University of Oxford, the Finnish Meteorological Institute and the Leibniz Institute for Tropospheric Research, and managed by the Center for Climate Systems Modeling (C2SM) at ETH Zurich

    The end of the unique myocardial band: part II clinical and functional considerations

    Get PDF
    Two of the leading concepts of mural ventricular architecture are the unique myocardial band and the myocardial mesh model. We have described, in an accompanying article published in this journal, how the anatomical, histological and high-resolution computed tomographic studies strongly favour the latter concept. We now extend the argument to describe the linkage between mural architecture and ventricular function in both health and disease. We show that clinical imaging by echocardiography and magnetic resonance imaging, and electrophysiological studies, all support the myocardial mesh model. We also provide evidence that the unique myocardial band model is not compatible with much of scientific research

    Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding

    Get PDF
    NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove

    Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    Get PDF
    We present a new measurement of the kinematic Sunyaev-Zeldovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zeldovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.Comment: 15 pages, 8 figures, 2 table

    Rare musculoskeletal diseases in adults: a research priority setting partnership with the James Lind Alliance

    Get PDF
    Background Osteogenesis imperfecta, fibrous dysplasia/McCune-Albright syndrome and X-linked hypophosphatemia are three rare musculoskeletal diseases characterised by bone deformities, frequent fractures and pain. Little high-quality research exists on appropriate treatment and long-term management of these conditions in adults. This is further worsened by limited research funding in rare diseases and a general mismatch between the existing research priorities and those of the patients. This partnership adopted the James Lind Alliance approach to identify the top 10 research priorities for rare musculoskeletal diseases in adults through joint patient, carer and healthcare professional collaboration. Results The initial survey for question collection recruited 198 respondents, submitting a total of 988 questions. 77% of the respondents were patients with a rare musculoskeletal disease. Following out-of-scope question exclusion, repeating query grouping and scientific literature check for answers, 39 questions on treatment and long-term management remained. In the second public survey, 220 respondents, of whom 85% were patients with a rare musculoskeletal disease, their carers, relatives or friends, prioritised these uncertainties, which allowed selection of the top 25. In the last stage, patients, carers and healthcare professionals gathered for a priority setting workshop to reach a consensus on the final top 10 research priorities. These focus on the uncertainties surrounding appropriate treatment and holistic long-term disease management, highlighting several aspects indirect to abnormal bone metabolism, such as extra-skeletal symptoms, psychological care of both patients and their families and disease course through ageing. Conclusions This James Lind Alliance priority setting partnership is the first to investigate rare bone diseases. The priorities identified here were developed jointly by patients, carers and healthcare professionals. We encourage researchers, funding bodies and other stakeholders to use these priorities in guiding future research for those affected by rare musculoskeletal disorders
    • 

    corecore