85 research outputs found

    Risk factors for delayed presentation and referral of symptomatic cancer: Evidence for common cancers

    Get PDF
    Background:It has been suggested that the known poorer survival from cancer in the United Kingdom, compared with other European countries, can be attributed to more advanced cancer stage at presentation. There is, therefore, a need to understand the diagnostic process, and to ascertain the risk factors for increased time to presentation.Methods:We report the results from two worldwide systematic reviews of the literature on patient-mediated and practitioner-mediated delays, identifying the factors that may influence these.Results:Across cancer sites, non-recognition of symptom seriousness is the main patient-mediated factor resulting in increased time to presentation. There is strong evidence of an association between older age and patient delay for breast cancer, between lower socio-economic status and delay for upper gastrointestinal and urological cancers and between lower education level and delay for breast and colorectal cancers. Fear of cancer is a contributor to delayed presentation, while sanctioning of help seeking by others can be a powerful mediator of reduced time to presentation. For practitioner delay, ‘misdiagnosis’ occurring either through treating patients symptomatically or relating symptoms to a health problem other than cancer, was an important theme across cancer sites. For some cancers, this could also be linked to inadequate patient examination, use of inappropriate tests or failing to follow-up negative or inconclusive test results.Conclusion:Having sought help for potential cancer symptoms, it is therefore important that practitioners recognise these symptoms, and examine, investigate and refer appropriately. © 2009 Cancer Research UK All rights reserved

    Predation on an Upper Trophic Marine Predator, the Steller Sea Lion: Evaluating High Juvenile Mortality in a Density Dependent Conceptual Framework

    Get PDF
    The endangered western stock of the Steller sea lion (Eumetopias jubatus) – the largest of the eared seals – has declined by 80% from population levels encountered four decades ago. Current overall trends from the Gulf of Alaska to the Aleutian Islands appear neutral with strong regional heterogeneities. A published inferential model has been used to hypothesize a continuous decline in natality and depressed juvenile survival during the height of the decline in the mid-late 1980's, followed by the recent recovery of juvenile survival to pre-decline rates. However, these hypotheses have not been tested by direct means, and causes underlying past and present population trajectories remain unresolved and controversial. We determined post-weaning juvenile survival and causes of mortality using data received post-mortem via satellite from telemetry transmitters implanted into 36 juvenile Steller sea lions from 2005 through 2011. Data show high post-weaning mortality by predation in the eastern Gulf of Alaska region. To evaluate the impact of such high levels of predation, we developed a conceptual framework to integrate density dependent with density independent effects on vital rates and population trajectories. Our data and model do not support the hypothesized recent recovery of juvenile survival rates and reduced natality. Instead, our data demonstrate continued low juvenile survival in the Prince William Sound and Kenai Fjords region of the Gulf of Alaska. Our results on contemporary predation rates combined with the density dependent conceptual framework suggest predation on juvenile sea lions as the largest impediment to recovery of the species in the eastern Gulf of Alaska region. The framework also highlights the necessity for demographic models based on age-structured census data to incorporate the differential impact of predation on multiple vital rates

    Are sciences essential and humanities elective? Disentangling competing claims for humanities research public value

    Get PDF
    [EN] Recent policy discourse suggests that arts and humanities research is seen as being less useful to society than other disciplines, notably in science, technology, engineering and mathematics. The paper explores how this assumption s construction has been built and whether it is based upon an unfair prejudice: we argue for a prima facie case to answer in assuming that arts and humanities research s lower societal value. We identify a set of claims circulating in policy circles regarding science, technology, engineering and math- ematics research and arts and humanities research s differences. We find two groups: arts and humanities research is less useful than science, technology, engineering and mathematics, and arts and humanities research is merely differently useful. We argue that empirical analysis is necessary to disentangle which ones are true to assess whether policy-making is being based on rational and evidence-based claims. We argue that debates about public research value should recognise that humanities have different (but equally valid) kinds of societal value.This work was supported by the Spanish Ministry of Education, which funded the PhD research fellowship of Julia Olmos Peñuela through the F.P.U program [AP2007- 01850]. The research fellowship took place in the framework of the HERAVALUE project, Measuring the public value of arts and humanities research, financially supported by the HERA Joint Research Programme, cofunded by AHRC, AKA, DASTI, ETF, FNR, FWF, HAZU, IRCHSS, MHEST, NWO, RANNIS, RCN, VR and The European Community FP7 2007-2013, under the Socio-economic Sciences and Humanities programme. The authors would like to thank the editors and two anonymous referees for their invaluable comments. Any errors or omissions remain the authors’ responsibilitieOlmos-Peñuela, J.; Benneworth, P.; Castro-MartĂ­nez, E. (2015). Are sciences essential and humanities elective? Disentangling competing claims for humanities research public value. Arts and Humanities in Higher Education. 14(1):61-78. https://doi.org/10.1177/1474022214534081S617814

    Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition.

    Get PDF
    Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.This work was supported by the University of Cambridge, Cancer Research UK, Hutchison Whampoa; Cancer Research UK grants A6691 and A9892 (M.N., N.K., C.J.T., D.C.B., C.J.C., L.S.G, and M.S.); a fellowship from the Uehara Memorial Foundation (M.S.).This is the author accepted manuscript. The final version is available from the American Society for Cell Biology via http://dx.doi.org/10.1091/mbc.E15-01-000

    Stressful situation if CENP-A not front and CENter

    Get PDF
    The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4) is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. To identify additional mechanisms that prevent CENP-A(Cse4) misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4) in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4) is enriched at promoters that contain histone H2A.Z(Htz1) nucleosomes, but that H2A.Z(Htz1) is not required for CENP-A(Cse4) mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1) from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4). Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4). The down-regulated genes are enriched for CENP-A(Cse4) mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation

    The expansion field: The value of H_0

    Full text link
    Any calibration of the present value of the Hubble constant requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4-30 Mpc is crucial. A list of 279 such galaxy distances within v<2000 km/s is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins from v=250 to at least 2000 km/s. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km/s. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km/s but increasing outwards. Due to the linearity of the expansion field the Hubble constant H_0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H_0=63.0+/-1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H_0=63.4+/-1.7 at 15 Mpc. This agrees also with the large-scale value of H_0=61.2+/-0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H_0=62.3+/-1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Typical errors of H_0 come from the use of a universal, yet unjustified P-L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.Comment: 44 pages, 4 figures, 6 tables, accepted for publication in the Astronony and Astrophysics Review 15

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    • 

    corecore