224 research outputs found

    A comparison of clinical pharmacodynamics of different administration schedules of oral topotecan (Hycamtin)

    Get PDF
    Prolonged exposure to topotecan in in vitro and in vivo experiments has yielded the highest antitumor efficacy. An oral formulation of topotecan with a bioavailability of 32-44% in humans enables convenient prolonged administration. Pharmacokinetic/pharmacodynamic relationships from four Phase I studies with different schedules of administration of oral topotecan in 99 adult patients with malignant solid tumors refractory to standard forms of chemotherapy were compared. Topotecan was administered as follows: (a) once daily (o.d.) for 5 days every 21 days (29 patients); (b) o.d. for 10 days every 21 days (19 patients); (c) twice daily (b.i.d.) for 10 days every 21 days (20 patients); and (d) b.i.d. for 21 days every 28 days (31 patients). Pharmacokinetic analysis was performed in 55 patients using a validated high-performance liquid chromatographic assay and noncompartmental pharmacokinetic me

    A straw drift chamber spectrometer for studies of rare kaon decays

    Full text link
    We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds

    Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

    Get PDF
    We present a systematic analysis of the description of odd nuclei by the Skyrme-Hartree-Fock approach augmented with pairing in BCS approximation and blocking of the odd nucleon. Current and spin densities in the Skyrme functional produce time-odd mean fields (TOMF) for odd nuclei. Their effect on basic properties (binding energies, odd-even staggering, separation energies and spectra) is investigated for the three Skyrme parameterizations SkI3, SLy6, and SV-bas. About 1300 spherical and axially-deformed odd nuclei with 16 < Z < 92 are considered. The calculations demonstrate that the TOMF effect is generally small, although not fully negligible. The influence of the Skyrme parameterization and the consistency of the calculations are much more important. With a proper choice of the parameterization, a good description of binding energies and their differences is obtained, comparable to that for even nuclei. The description of low-energy excitation spectra of odd nuclei is of varying quality depending on the nucleus

    1873-1874, End of a Century?: Time and Space in Valera's Pepita Jiménez, Ros de Olano's Jornadas de retorno, and Alarcón's El sombrero de tres picos and La Alpujarra

    Get PDF
    This article argues for the existence of a literature of the first Spanish Republic in the early 1870s. Valera's Pepita Jimenez makes sense in relation to this literature, rather than in comparison with 'Realism'. The literature of the first republic is distinguished by two facets: an ongoing dialogue with Ros de Olano's experiments in simultaneous compression and extension of form; and a belief that the nineteenth-century revolutionary spirit of the age has reached a critical end point, and needs reinvention that leads to Restoration politics

    Lifetime studies of 130nm nMOS transistors intended for long-duration, cryogenic high-energy physics experiments

    Full text link
    Future neutrino physics experiments intend to use unprecedented volumes of liquid argon to fill a time projection chamber in an underground facility. To increase performance, integrated readout electronics should work inside the cryostat. Due to the scale and cost associated with evacuating and filling the cryostat, the electronics will be unserviceable for the duration of the experiment. Therefore, the lifetimes of these circuits must be well in excess of 20 years. The principle mechanism for lifetime degradation of MOSFET devices and circuits operating at cryogenic temperatures is via hot carrier degradation. Choosing a process technology that is, as much as possible, immune to such degradation and developing design techniques to avoid exposure to such damage are the goals. This requires careful investigation and a basic understanding of the mechanisms that underlie hot carrier degradation and the secondary effects they cause in circuits. In this work, commercially available 130nm nMOS transistors operating at cryogenic temperatures are investigated. The results show that the difference in lifetime for room temperature operation and cryogenic operation for this process are not great and the lifetimes at both 300K and at 77K can be projected to more than 20 years at the nominal voltage (1.5V) for this technology

    Lifetime measurement in excited and yrast superdeformed bands in Hg194

    Get PDF
    Nuclear level lifetimes have been measured in two superdeformed bands in Hg194 using the Doppler-shift attenuation method. Average transition quadrupole moments derived from the lifetimes of an excited and yrast superdeformed bands are Qt=17.6(30) and 17.2(20)eb, respectively. The Doppler shifts of the excited band relative to the yrast band indicate a slight difference in quadrupole moments [+4(5)%], assuming similar side feeding..ul2 These results imply that the second well is stable and rigid with respect to the particle excitation responsible for this excited band

    Cosmic acceleration and phantom crossing in f(T)f(T)-gravity

    Full text link
    In this paper, we propose two new models in f(T)f(T) gravity to realize universe acceleration and phantom crossing due to dark torsion in the formalism. The model parameters are constrained and the observational test are discussed. The best fit results favors an accelerating universe with possible phantom crossing in the near past or future followed respectively by matter and radiation dominated era.Comment: 20 pages, 18 figures, Will appear in Astrophys Space Sc

    Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment

    Get PDF
    LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020

    COVAD survey 2 long-term outcomes: unmet need and protocol

    Get PDF
    Vaccine hesitancy is considered a major barrier to achieving herd immunity against COVID-19. While multiple alternative and synergistic approaches including heterologous vaccination, booster doses, and antiviral drugs have been developed, equitable vaccine uptake remains the foremost strategy to manage pandemic. Although none of the currently approved vaccines are live-attenuated, several reports of disease flares, waning protection, and acute-onset syndromes have emerged as short-term adverse events after vaccination. Hence, scientific literature falls short when discussing potential long-term effects in vulnerable cohorts. The COVAD-2 survey follows on from the baseline COVAD-1 survey with the aim to collect patient-reported data on the long-term safety and tolerability of COVID-19 vaccines in immune modulation. The e-survey has been extensively pilot-tested and validated with translations into multiple languages. Anticipated results will help improve vaccination efforts and reduce the imminent risks of COVID-19 infection, especially in understudied vulnerable groups

    Mechanical stability of the CMS strip tracker measured with a laser alignment system

    Get PDF
    Peer reviewe
    corecore