31 research outputs found

    Effects of dietary vegetable oil on atlantic salmon hepatocyte fatty acid desaturation and liver fatty acid compositions

    Get PDF
    Fatty acyl desaturase activities, involved in the conversion of the C18 EFA, 18:2n-6 and 18:3n-3, to the highly unsaturated fatty acids (HUFA) 20:4n-6, 20:5n-3 and 22:6n-3, are known to be under nutritional regulation. Specifically, the activity of the desaturation/elongation pathway is depressed when animals, including fish, are fed fish oils rich in n-3HUFA compared to animals fed vegetable oils rich in C18 EFA. The primary aims of the present study were a) to establish the relative importance of product inhibition (n-3HUFA) versus increased substrate concentration (C18 EFA) and, b) to determine whether 18:2n-6 and 18:3n-3 differ in their effects, on the hepatic fatty acyl desaturation/elongation pathway in Atlantic salmon (Salmo salar). Smolts were fed ten experimental diets containing blends of two vegetable oils, linseed (LO) and rapeseed oil (RO), and fish oil (FO) in a triangular mixture design for 50 weeks. Fish were sampled after 32 and 50 weeks, lipid and fatty acid composition of liver determined, fatty acyl desaturation/elongation activity estimated in hepatocytes using [1-14C]18:3n-3 as substrate, and the data subjected to regression analyses. Dietary 18:2n-6 was positively correlated, and n-3HUFA negatively correlated, with lipid content of liver. Dietary 20:5n-3 and 22:6n-3 were positively correlated with liver fatty acids with a slope greater than unity suggesting relative retention and deposition of these HUFA. In contrast, dietary 18:2n-6 and 18:3n-3 were positively correlated with liver fatty acids with a slope of less than unity suggesting metabolism via β-oxidation and/or desaturation/elongation. Consistent with this, fatty acyl desaturation/elongation in hepatocytes was significantly increased by feeding diets containing vegetable oils. Dietary 20:5n-3 and 22:6n-3 levels were negatively correlated with hepatocyte fatty acyl desaturation. At 32 weeks, 18:2n-6 but not 18:3n-3, was positively correlated with hepatocyte fatty acyl desaturation activity whereas the reverse was true at 50 weeks. The data indicate that both feedback inhibition through increased n-3HUFA and decreased C18 fatty acyl substrate concentration are probably important in determining hepatocyte fatty acyl desaturation activities, and that 18:2n-6 and 18:3n-3 may differ in their effects on this pathway

    Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics

    Get PDF
    Essential metals, such as iron and copper, play a critical role in a plethora of cellular processes including cell growth and proliferation. However, concomitantly, excess of these metal ions in the body can have deleterious effects due to their ability to generate cytotoxic reactive oxygen species (ROS). Thus, the human body has evolved a very well-orchestrated metabolic system that keeps tight control on the levels of these metal ions. Considering their very high proliferation rate, cancer cells require a high abundance of these metals compared to their normal counterparts. Interestingly, new anti-cancer agents that take advantage of the sensitivity of cancer cells to metal sequestration and their susceptibility to ROS have been developed. These ligands can avidly bind metal ions to form redox active metal complexes, which lead to generation of cytotoxic ROS. Furthermore, these agents also act as potent metastasis suppressors due to their ability to up-regulate the metastasis suppressor gene, N-myc downstream regulated gene 1. This review discusses the importance of iron and copper in the metabolism and progression of cancer, how they can be exploited to target tumors and the clinical translation of novel anti-cancer chemotherapeutics

    Gastroduodenal Bicarbonate Secretion and its Response to Sucralfate

    No full text

    The Gemini-North Multi-Object Spectrograph: Performance in Imaging, Long-Slit, and Multi-Object Spectroscopic Modes.

    No full text
    Results of the commissioning of the first Gemini Multi-Object Spectrograph (GMOS) are described. GMOS and the Gemini-North telescope act as a complete system to exploit a large 8 m aperture with improved image quality. Key GMOS design features such as the on-instrament wave-front sensor (OIWFS) and active flexure compensation system maintain very high image quality and stability, allowing precision observations of many targets simultaneously while reducing the need for frequent recalibration and reacquisition of targets. In this paper, example observations in imaging, long-slit, and multiobject spectroscopic modes are presented and verified by comparison with data from the literature. The expected high throughput of GMOS is confirmed from standard star observations; it peaks at about 60% when imaging in the r′ and i′ bands, and at 45%-50% in spectroscopic mode at 6300 Å. Deep GMOS photometry in the g′, r′, and i′ filters is compared to data from the literature, and the uniformity of this photometry across the GMOS field is verified. The multiobject spectroscopic mode is demonstrated by observations of the galaxy cluster A383. Centering of objects in the multislit mask was achieved to an rms accuracy of 80 mas across the 5′.5 field, and an optimized setup procedure (now in regular use) improves this to better than 50 mas. Stability during these observations was high, as expected: the average shift between object and slit positions was 5.3 mas hr -1, and the wavelength scale drifted by only 0.1 Å hr -1 (in a setup with spectral resolution of 6 Å). Finally, the current status of GMOS on Gemini-North is summarized, and future plans are outlined

    Integral field spectroscopy with the Gemini Multiobject Spectrograph. I. design, construction, and testing

    No full text
    The Gemini Multiobject Spectrograph (GMOS) installed on the Gemini-North telescope has a facility for integral field spectroscopy over the wavelength range 0.4-1.0 mum. GMOS is converted to this mode by the remote insertion of an integral field unit (IFU) into the beam in place of the masks used for the multiobject mode. With the IFU deployed, integral field spectroscopy is available over a fully filled contiguous field of 5''×7'' with a sampling of 0.2". A separate field of half the area, but otherwise identical, is also provided to improve background subtraction. The IFU contains 1500 lenslet-coupled fibers and is the first facility of any type for integral field spectroscopy employed on an 8-10 m telescope. We describe the design, construction, and testing of the GMOS IFU and present measurements of the throughput both in the laboratory and at the telescope. We compare these with a theoretical prediction made before construction started. All are in good agreement with each other, with the on-telescope throughput exceeding 60% (averaged over wavelength). A second paper will verify the scientific performance by comparison with existing one- and two-dimensional data sets
    corecore