823 research outputs found
Correlation of tissue-typing tests in baboon renal allotransplants
Click on the link to view
Delineating the phenotypic spectrum of Bainbridge-Ropers syndrome: 12 new patients with de novo, heterozygous, loss-of-function mutations in ASXL3 and review of published literature
BACKGROUND: Bainbridge-Ropers syndrome (BRPS) is a recently described developmental disorder caused by de novo truncating mutations in the additional sex combs like 3 (ASXL3) gene. To date, there have been fewer than 10 reported patients. OBJECTIVES: Here, we delineate the BRPS phenotype further by describing a series of 12 previously unreported patients identified by the Deciphering Developmental Disorders study. METHODS: Trio-based exome sequencing was performed on all 12 patients included in this study, which found a de novo truncating mutation in ASXL3. Detailed phenotypic information and patient images were collected and summarised as part of this study. RESULTS: By obtaining genotype:phenotype data, we have been able to demonstrate a second mutation cluster region within ASXL3. This report expands the phenotype of older patients with BRPS; common emerging features include severe intellectual disability (12/12), poor/ absent speech (12/12), autistic traits (9/12), distinct face (arched eyebrows, prominent forehead, high-arched palate, hypertelorism and downslanting palpebral fissures), (9/12), hypotonia (12/12) and significant feeding difficulties (12) when young. DISCUSSION: Similarities in the patients reported previously in comparison with this cohort included their distinctive craniofacial features, feeding problems, absent/limited speech and intellectual disability. Shared behavioural phenotypes include autistic traits, hand-flapping, rocking, aggressive behaviour and sleep disturbance. CONCLUSIONS: This series expands the phenotypic spectrum of this severe disorder and highlights its surprisingly high frequency. With the advent of advanced genomic screening, we are likely to identify more variants in this gene presenting with a variable phenotype, which this study will explore
Epistemic policy networks in the European Unionâs CBRN risk mitigation policy
This paper offers insights into an innovative and currently flagship approach of the European Union (EU) to the mitigation of chemical, biological, radiological, and nuclear (CBRN) risks. Building on its long-time experience in the CBRN field, the EU has incorporated methods familiar to the students of international security governance: it is establishing regional networks of experts and expertise. CBRN Centers of Excellence, as they are officially called, aim to contribute to the security and safety culture in different parts of Africa, the Middle East, South East Asia, and South East Europe, in the broadly construed CBRN area. These regional networks represent a modern form of security cooperation, which can be conceptualized as an epistemic policy networks approach. It offers flexibility to the participating states, which have different incentives to get involved. At the same, however, the paper identifies potential limitations and challenges of epistemic policy networks in this form
Freezing and large time scales induced by geometrical frustration
We investigate the properties of an effective Hamiltonian with competing
interactions involving spin and chirality variables, relevant for the
description of the {\it trimerized} version of the spin-1/2 {\it kagome}
antiferromagnet. Using classical Monte Carlo simulations, we show that
remarkable behaviors develop at very low temperatures. Through an {\it order by
disorder} mechanism, the low-energy states are characterized by a dynamical
freezing of the chiralities, which decouples the lattice into ``dimers'' and
``triangles'' of antiferromagnetically coupled spins. Under the presence of an
external magnetic field, the particular topology of the chiralities induces a
very slow spin dynamics, reminiscent of what happens in ordinary spin glasses.Comment: 12 pages, 13 figure
Geometry and material effects in Casimir physics - Scattering theory
We give a comprehensive presentation of methods for calculating the Casimir
force to arbitrary accuracy, for any number of objects, arbitrary shapes,
susceptibility functions, and separations. The technique is applicable to
objects immersed in media other than vacuum, to nonzero temperatures, and to
spatial arrangements in which one object is enclosed in another. Our method
combines each object's classical electromagnetic scattering amplitude with
universal translation matrices, which convert between the bases used to
calculate scattering for each object, but are otherwise independent of the
details of the individual objects. This approach, which combines methods of
statistical physics and scattering theory, is well suited to analyze many
diverse phenomena. We illustrate its power and versatility by a number of
examples, which show how the interplay of geometry and material properties
helps to understand and control Casimir forces. We also examine whether
electrodynamic Casimir forces can lead to stable levitation. Neglecting
permeabilities, we prove that any equilibrium position of objects subject to
such forces is unstable if the permittivities of all objects are higher or
lower than that of the enveloping medium; the former being the generic case for
ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics
volume in Casimir physic
A Thermal Graviton Background from Extra Dimensions
Inflationary cosmology predicts a low-amplitude graviton background across a
wide range of frequencies. This Letter shows that if one or more extra
dimensions exist, the graviton background may have a thermal spectrum instead,
dependent on the fundamental scale of the extra dimensions. The energy density
is shown to be significant enough that it can affect nucleosynthesis in a
substantial way. The possibility of direct detection of a thermal graviton
background using the 21-cm hydrogen line is discussed. Alternative explanations
for the creation of a thermal graviton background are also examined.Comment: 5 pages, 1 figure, requires autart.cls, to appear in Phys. Lett. B, 1
reference adde
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
- âŠ