408 research outputs found
Agency as the Acquisition of Capital: the role of one-on-one tutoring and mentoring in changing a refugee student's educational trajectory
Current research into the experiences of refugee students in mainstream secondary schools in Australia indicates that for these students, schools are places of social and academic isolation and failure. This article introduces one such student, Lian, who came to Australia as a refugee from Burma, and whom the author tutored and mentored intensively during his final year of schooling. The article provides an empirically derived understanding of how one-on-one tutoring and mentoring became a platform through which this student was able to succeed in a structure which systematically tried to exclude him. Here, agency is conceptualised in terms of Bourdieu's concept of capital. The analysis highlights the ways in which one-on-one tutoring and mentoring provided the necessary platform by which this refugee student was able to acquire the necessary capital that effected a positive change in his educational trajectory
On the distribution of maximum crest and wave height at intermediate water depths
We report new descriptions for the (probability) distributions of hourly maximum crest and wave height of water surface gravity waves for intermediate water depths. Estimated distributions are based on analysis of laboratory-scale measurements at the DHI wave basin. For a given sea state, the distribution of both hourly maximum crest and hourly maximum wave height, normalised by sea state significant wave height, is found to follow a generalised extreme value (GEV) distribution. Variation of the three parameters of the GEV distribution across sea states, is expressed in terms of a response surface model as a function of non-dimensional sea state Ursell number and wave steepness, and wave directional spreading angle. For inference, conventional Monte Carlo wave basin measurements are supplemented with measurements selected by means of a novel “pre-selection” sampling scheme using numerical simulations. This scheme effectively guarantees that extreme events from tails of distributions are produced, and reduces uncertainties associated with the estimated distributions. Estimation is performed using Bayesian inference, allowing uncertainties to be quantified, and providing estimates of posterior predictive tail distributions for sea states with arbitrary characteristics within the domain of sea state characteristics covered by the model
An algebraic/numerical formalism for one-loop multi-leg amplitudes
We present a formalism for the calculation of multi-particle one-loop
amplitudes, valid for an arbitrary number N of external legs, and for massive
as well as massless particles. A new method for the tensor reduction is
suggested which naturally isolates infrared divergences by construction. We
prove that for N>4, higher dimensional integrals can be avoided. We derive many
useful relations which allow for algebraic simplifications of one-loop
amplitudes. We introduce a form factor representation of tensor integrals which
contains no inverse Gram determinants by choosing a convenient set of basis
integrals. For the evaluation of these basis integrals we propose two methods:
An evaluation based on the analytical representation, which is fast and
accurate away from exceptional kinematical configurations, and a robust
numerical one, based on multi-dimensional contour deformation. The formalism
can be implemented straightforwardly into a computer program to calculate
next-to-leading order corrections to multi-particle processes in a largely
automated way.Comment: 71 pages, 7 figures, formulas for rank 6 pentagons added in Appendix
Quantum mechanics: Myths and facts
A common understanding of quantum mechanics (QM) among students and practical
users is often plagued by a number of "myths", that is, widely accepted claims
on which there is not really a general consensus among experts in foundations
of QM. These myths include wave-particle duality, time-energy uncertainty
relation, fundamental randomness, the absence of measurement-independent
reality, locality of QM, nonlocality of QM, the existence of well-defined
relativistic QM, the claims that quantum field theory (QFT) solves the problems
of relativistic QM or that QFT is a theory of particles, as well as myths on
black-hole entropy. The fact is that the existence of various theoretical and
interpretational ambiguities underlying these myths does not yet allow us to
accept them as proven facts. I review the main arguments and counterarguments
lying behind these myths and conclude that QM is still a
not-yet-completely-understood theory open to further fundamental research.Comment: 51 pages, pedagogic review, revised, new references, to appear in
Found. Phy
Radio Science Investigation on a Mercury Orbiter Mission
We review the results from {\it Mariner 10} regarding Mercury's gravity field
and the results from radar ranging regarding topography. We discuss the
implications of improving these results, including a determination of the polar
component, as well as the opportunity to perform relativistic gravity tests
with a future {\it Mercury Orbiter}. With a spacecraft placed in orbit with
periherm at 400 km altitude, apherm at 16,800 km, period 13.45 hr and latitude
of periherm at +30 deg, one can expect a significant improvement in our
knowledge of Mercury's gravity field and geophysical properties. The 2000 Plus
mission that evolved during the European Space Agency (ESA) {\it Mercury
Orbiter} assessment study can provide a global gravity field complete through
the 25th degree and order in spherical harmonics. If after completion of the
main mission, the periherm could be lowered to 200 km altitude, the gravity
field could be extended to 50th degree and order. We discuss the possibility
that a search for a Hermean ionosphere could be performed during the mission
phases featuring Earth occultations.
Because of its relatively large eccentricity and close proximity to the Sun,
Mercury's orbital motion provides one of the best solar-system tests of general
relativity. Consequently, we emphasize the number of feasible relativistic
gravity tests that can be performed within the context of the parameterized
post-Newtonian formalism - a useful framework for testing modern gravitational
theories. We pointed out that current results on relativistic precession of
Mercury's perihelion are uncertain by 0.5 %, and we discuss the expected
improvement using {\it Mercury Orbiter}. We discuss the importance of {\it
Mercury Orbiter} for setting limits on a possible time variation in theComment: 23 pages, LaTeX, no figure
Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector
The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg
array of high purity germanium detectors housed in an ultra-low background
shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA
DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while
demonstrating the feasibility of a tonne-scale experiment. It may also carry
out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that
customized Broad Energy Germanium (BEGe) detectors produced by Canberra have
several desirable features for a neutrinoless double-beta decay experiment,
including low electronic noise, excellent pulse shape analysis capabilities,
and simple fabrication. We have deployed a customized BEGe, the MAJORANA
Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and
shield at the Kimballton Underground Research Facility in Virginia. This paper
will focus on the detector characteristics and measurements that can be
performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
- …