591 research outputs found
Phenomenology of the Gowdy Universe on
Numerical studies of the plane symmetric, vacuum Gowdy universe on yield strong support for the conjectured asymptotically velocity term
dominated (AVTD) behavior of its evolution toward the singularity except,
perhaps, at isolated spatial points. A generic solution is characterized by
spiky features and apparent ``discontinuities'' in the wave amplitudes. It is
shown that the nonlinear terms in the wave equations drive the system
generically to the ``small velocity'' AVTD regime and that the spiky features
are caused by the absence of these terms at isolated spatial points.Comment: 19 pages, 21 figures, uses Revtex, psfi
Excluded Volume Effects in the Quark Meson Coupling Model
Excluded volume effects are incorporated in the quark meson coupling model to
take into account in a phenomenological way the hard core repulsion of the
nuclear force. The formalism employed is thermodynamically consistent and does
not violate causality. The effects of the excluded volume on in-medium nucleon
properties and the nuclear matter equation of state are investigated as a
function of the size of the hard core. It is found that in-medium nucleon
properties are not altered significantly by the excluded volume, even for large
hard core radii, and the equation of state becomes stiffer as the size of the
hard core increases.Comment: 14 pages, revtex, 6 figure
Oscillations and waves in solar spicules
Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolutions and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfven and kink waves in spicules. We also address the extensive debate made on the Alfven versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes
Atomic diffraction from nanostructured optical potentials
We develop a versatile theoretical approach to the study of cold-atom
diffractive scattering from light-field gratings by combining calculations of
the optical near-field, generated by evanescent waves close to the surface of
periodic nanostructured arrays, together with advanced atom wavepacket
propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.
Diagnosing and Treating Sleep Apnea in Patients With Acute Cerebrovascular Disease
Background Obstructive sleep apnea ( OSA ) is common among patients with acute ischemic stroke and transient ischemic attack. We evaluated whether continuous positive airway pressure for OSA among patients with recent ischemic stroke or transient ischemic attack improved clinical outcomes. Methods and Results This randomized controlled trial among patients with ischemic stroke/transient ischemic attack compared 2 strategies (standard or enhanced) for the diagnosis and treatment of OSA versus usual care over 1 year. Primary outcomes were National Institutes of Health Stroke Scale and modified Rankin Scale scores. Among 252 patients (84, control; 86, standard; 82, enhanced), OSA prevalence was as follows: control, 69%; standard, 74%; and enhanced, 80%. Continuous positive airway pressure use occurred on average 50% of nights and was similar among standard (3.9±2.1 mean hours/nights used) and enhanced (4.3±2.4 hours/nights used; P=0.46) patients. In intention-to-treat analyses, changes in National Institutes of Health Stroke Scale and modified Rankin Scale scores were similar across groups. In as-treated analyses among patients with OSA, increasing continuous positive airway pressure use was associated with improved National Institutes of Health Stroke Scale score (no/poor, -0.6±2.9; some, -0.9±1.4; good, -0.3±1.0; P=0.0064) and improved modified Rankin Scale score (no/poor, -0.3±1.5; some, -0.4±1.0; good, -0.9±1.2; P=0.0237). In shift analyses among patients with OSA, 59% of intervention patients had best neurological symptom severity (National Institutes of Health Stroke Scale score, 0-1) versus 38% of controls ( P=0.038); absolute risk reduction was 21% (number needed to treat, 4.8). Conclusions Although changes in neurological functioning and functional status were similar across the groups in the intention-to-treat analyses, continuous positive airway pressure use was associated with improved neurological functioning among patients with acute ischemic stroke/transient ischemic attack with OS
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
- …