842 research outputs found

    Fabrication of chromium carbide cermets by electric resistance sintering process: Processing, microstructure and mechanical properties

    Get PDF
    Chromium carbide-based cermets are suitable for use in abrasive and corrosive environments. This work presents the fabrication of chromium carbide-based cermets by a very fast sintering process: Electric Resistance Sintering. The thermal cycle duration was less than 1 s and without protective atmosphere. Two different compositions were studied: Cr3C2-25NiCr (wt%) and WC-20Cr3C2-7Ni (wt%). Microstructure and crystallographic phases of the initial powders and sintered materials are presented. In addition, hardness and toughness were characterized and compared to conventional materials. One important issue of ERS is the size and homogeneity of the pieces. This work presents the also the fabrication of a mining wear piece and some aspects about scaling up.This work is financially supported by the European Institute of Innovation and Technology (EIT Raw Materials), a body of European Union (Horizon 2020 Framework Programme) under the project FASTRAM

    Life cycle assessment of mechanical recycling of post-consumer polyethylene flexible films based on a real case in Spain

    Get PDF
    Mechanical recycling of plastic waste is a common practice in industry and is an environmental solution to the problem of plastics disposal. In this article, a case study of mechanical recycling of post-consumer polyethylene flexible films in Granada (Spain) was analyzed from an environmental point of view by the Life-Cycle Assessment methodology. The industrial process is divided into four large areas of operation: sorting, washing, extrusion and wastewater treatment. The results show that the washing area has the largest environmental impacts, mostly due to the electricity consumption, followed by sorting. Also, the overall mechanical recycling process causes damage, mainly, on human health, which dominates over ecosystems and resources with 93.4% of the total impact of the process. Two different scenarios have also been considered for the generated waste, and they critically affect the overall environmental performance of the entire process. The first scenario considers the impacts of the landfill disposal of the humid organic matter generated and the losses of PE. In this scenario, all the CH4 resulting from the anaerobic degradation of organic matter was emitted into the atmosphere. In this case, human health impact was high. In the second end-of-life scenario, all the CH4 generated would be captured and burned in a gas turbine for energy generation. Lower impacts were found in human health and ecosystems categories, as well as the total value, in the second scenario.This work has received funds from the European Union– LIFE Programme, under Grant Agreement LIFE17ENV/ES/000229. Funding for open access charge: Universidad de Granada / CBUA

    Characterization of the spoilage microbiota of hake fillets packaged under a modified atmosphere (MAP) rich in CO2 (50% CO2/50% N2) and stored at different temperatures

    Get PDF
    The aim of this study was to characterize the spoilage microbiota of hake fillets stored under modified atmospheres (MAP) (50% CO2/50% N2) at different temperatures using high-throughput 16S rRNA gene sequencing and to compare the results with those obtained using traditional microbiology techniques. The results obtained indicate that, as expected, higher storage temperatures lead to shorter shelf-lives (the time of sensory rejection by panelists). Thus, the shelf-life decreased from six days to two days for Batch A when the storage temperature increased from 1 to 7 °C, and from five to two days—when the same increase in storage temperature was compared—for Batch B. In all cases, the trimethylamine (TMA) levels measured at the time of sensory rejection of hake fillets exceeded the recommended threshold of 5 mg/100 g. Photobacterium and Psychrobacter were the most abundant genera at the time of spoilage in all but one of the samples analyzed: Thus, Photobacterium represented between 19% and 46%, and Psychrobacter between 27% and 38% of the total microbiota. They were followed by Moritella, Carnobacterium, Shewanella, and Vibrio, whose relative order varied depending on the sample/batch analyzed. These results highlight the relevance of Photobacterium as a spoiler of hake stored in atmospheres rich in CO2. Further research will be required to elucidate if other microorganisms, such as Psychrobacter, Moritella, or Carnobacterium, also contribute to spoilage of hake when stored under MAP

    Development of electric resistance sintering process for the fabrication of hard metals: Processing, microstructure and mechanical properties

    Get PDF
    This work presents the development of the Electrical Resistance Sintering (ERS) process for the fabrication of hard metals. The compositions of the materials produced were WC with 6 and 10 wt% of Co. In addition to the specific characteristics of the technology, the characterization of the produced parts is presented and compared to materials obtained by conventional processes. The parts produced by ERS present densities comparable to the ones obtained by conventional methods. The microstructural comparison shows a considerable grain size reduction in the ERS materials which consequently brings a hardness increase. ERS materials show similar fracture toughness to conventional ones. The very fast sintering allows performing the process without any protective atmosphere, therefore making this process very attractive for the production of materials that need to be sintered under non-oxidising environments. The total duration of the cycle, including heating, holding time and cooling is few seconds. Finally, some considerations about the scale up and possible industrialization of the technology are explained.This work is financially supported by the Seventh Framework Program of the Commission of the European Communities under project EFFIPRO contract no. NMP2-SL-2013-608729

    Application of the Zero-Order Reaction Rate Model and Transition State Theory to predict porous Ti6Al4V bending strength

    Get PDF
    Porous T16Al4V samples were produced by microsphere sintering. The Zero-Order Reaction Rate Model and Transition State Theory were used to model the sintering process and to estimate the bending strength of the porous samples developed. The evolution of the surface area during the sintering process was used to obtain sintering parameters (sintering constant, activation energy, frequency factor, constant of activation and Gibbs energy of activation). These were then correlated with the bending strength in order to obtain a simple model with which to estimate the evolution of the bending strength of the samples when the sintering temperature and time are modified: sigma(y) = P + B [In (T . t) - R.T./Delta G(g)]. Although the sintering parameters were obtained only for the microsphere sizes analysed here, the strength of intermediate sizes could easily be estimated following this model. (c) 2012 Elsevier B.V. All rights reserved.The authors are grateful to the Spanish Ministerio de Ciencia e Innovacion for supporting this study through project PET2008_0158_02. The translation of this paper was funded by the Universidad Politecnica de Valencia and the Universitat Jaume I.Reig Cerdá, L.; Amigó Borrás, V.; Busquets Mataix, DJ.; Calero, JA.; Ortiz Rosales, JL. (2012). Application of the Zero-Order Reaction Rate Model and Transition State Theory to predict porous Ti6Al4V bending strength. Materials Science and Engineering: C. 32(6):1621-1626. https://doi.org/10.1016/j.msec.2012.04.052S1621162632

    Measurement of the Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2β\beta measurement from B0J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0J/ψKS0)=(1.83±0.28)×105BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Measurement of the CP-violating phase \phi s in Bs->J/\psi\pi+\pi- decays

    Get PDF
    Measurement of the mixing-induced CP-violating phase phi_s in Bs decays is of prime importance in probing new physics. Here 7421 +/- 105 signal events from the dominantly CP-odd final state J/\psi pi+ pi- are selected in 1/fb of pp collision data collected at sqrt{s} = 7 TeV with the LHCb detector. A time-dependent fit to the data yields a value of phi_s=-0.019^{+0.173+0.004}_{-0.174-0.003} rad, consistent with the Standard Model expectation. No evidence of direct CP violation is found.Comment: 15 pages, 10 figures; minor revisions on May 23, 201

    Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓

    Get PDF
    A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0  fb-1 of pp collisions at √s=7  TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101  TeV/c2 and MLQ(B0→e±μ∓)>126  TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex
    corecore