30 research outputs found

    A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort

    Get PDF
    <p><b>Objectives</b> The aim of this study was to confirm the influence of TNFSF4 polymorphisms on systemic sclerosis (SSc) susceptibility and phenotypic features.</p> <p><b>Methods</b> A total of 8 European populations of Caucasian ancestry were included, comprising 3014 patients with SSc and 3125 healthy controls. Four genetic variants of TNFSF4 gene promoter (rs1234314, rs844644, rs844648 and rs12039904) were selected as genetic markers.</p> <p><b>Results</b> A pooled analysis revealed the association of rs1234314 and rs12039904 polymorphisms with SSc (OR 1.15, 95% CI 1.02 to 1.31; OR 1.18, 95% CI 1.08 to 1.29, respectively). Significant association of the four tested variants with patients with limited cutaneous SSc (lcSSc) was revealed (rs1234314 OR 1.22, 95% CI 1.07 to 1.38; rs844644 OR 0.91, 95% CI 0.83 to 0.99; rs844648 OR 1.10, 95% CI 1.01 to 1.20 and rs12039904 OR 1.20, 95% CI 1.09 to 1.33). Association of rs1234314, rs844648 and rs12039904 minor alleles with patients positive for anti-centromere antibodies (ACA) remained significant (OR 1.23, 95% CI 1.10 to 1.37; OR 1.12, 95% CI 1.01 to 1.25; OR 1.22, 95% CI 1.07 to 1.38, respectively). Haplotype analysis confirmed a protective haplotype associated with SSc, lcSSc and ACA positive subgroups (OR 0.88, 95% CI 0.82 to 0.96; OR 0.88, 95% CI 0.80 to 0.96; OR 0.86, 95% CI 0.77 to 0.97, respectively) and revealed a new risk haplotype associated with the same groups of patients (OR 1.14, 95% CI 1.03 to 1.26; OR 1.20, 95% CI 1.08 to 1.35; OR 1.23, 95% CI 1.07 to 1.42, respectively).</p> <p><b>Conclusions</b> The data confirm the influence of TNFSF4 polymorphisms in SSc genetic susceptibility, especially in subsets of patients positive for lcSSc and ACA.</p&gt

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    New structural insights into the role of TROVE2 complexes in the on-set and pathogenesis of systemic lupus eythematosus determined by a combiantion of QCM-D and DPI

    Full text link
    The final publication is available at link.springer.com.[EN] The mechanism of self-recognition of the autoantigen TROVE2, a common biomarker in autoimmune diseases, has been studied with a quartz crystal microbalance with dissipation monitoring (QCM-D) and dual polarization interferometry (DPI). The complementarity and remarkable analytical features of both techniques has allowed new insights into the onset of systemic lupus erythematosus (SLE) to be achieved at the molecular level. The in vitro study for SLE patients and healthy subjects suggests that anti-TROVE2 autoantibodies may undergo an antibody bipolar bridging. An epitope-paratope-specific binding initially occurs to activate a hidden Fc receptor in the TROVE2 tertiary structure. This bipolar mechanism may contribute to the pathogenic accumulation of anti-TROVE2 autoantibody immune complex in autoimmune disease. Furthermore, the specific calcium-dependent protein-protein bridges point out at how the TRIM21/TROVE2 association might occur, suggesting that the TROVE2 protein could stimulate the intracellular immune signaling via the TRIM21 PRY-SPRY domain. These findings may help to better understand the origins of the specificity and affinity of TROVE2 interactions, which might play a key role in the SLE pathogenesis. This manuscript gives one of the first practical applications of two novel functions (-df/dD and Delta h/molec) for the analysis of the data provided by QCM-D and DPI. In addition, it is the first time that QCM-D has been used for mapping hidden Fc receptors as well as linear epitopes in a protein tertiary structure.We would like to thank Sylvia Daunert for her invaluable help with the discussion of the paper. Furthermore, we acknowledge financial support from the Generalitat Valenciana (GVA-PROMETEOII/2014/040) as well as the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under award numbers CTQ2013-45875-R and CTQ2013-42914-RJuste-Dolz, AM.; Do Nascimento, NM.; Monzó, IS.; Grau-García, E.; Roman-Ivorra, JA.; López-Paz, JL.; Escorihuela Fuentes, J.... (2019). New structural insights into the role of TROVE2 complexes in the on-set and pathogenesis of systemic lupus eythematosus determined by a combiantion of QCM-D and DPI. Analytical and Bioanalytical Chemistry. 411(19):4709-4720. https://doi.org/10.1007/s00216-018-1407-xS4709472041119Kakatia S, Teronpia R, Barmanb B. Frequency, pattern and determinants of flare in systemic lupus erythematosus: a study from North East India. Egypt Rheumatol. 2015;37:S55–9.Kuhn A, Wenzel J, Weyd H. Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clinic Rev Allerg Immunol. 2014;47:148–62.American Lupus Foundation. 2016. http://www.lupus.org .World Health Organization. Environmental health criteria 236. Geneva: WHO Press; 2006.Li W, Titov AA, Morel L. An update on lupus animal models. Curr Opin Rheumatol. 2017;29:1040–8711.Routsias JG, Tzioufas AG, Moutsopoulos HM. The clinical value of intracellular autoantigens B-cell epitopes in systemic rheumatic diseases. Clin Chim Acta. 2004;340:1–25.Franceschini F, Cavazzana I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity. 2005;38:55–63.Kelekar A, Saitta MR, Keene JD. Molecular composition of Ro small ribonucleoprotein complexes in human cells. Intracellular localization of the 60- and 52-kD proteins. J Clin Ivest. 1994;93:1637–44.Slobbe RL, Pluk W, van Venrooij WJ, Prujin GJM. Ro ribonucleoprotein assembly in vitro: identification of RNA-protein and protein-protein interactions. J Mol Biol. 1992;2:361–6.Chen X, Taylor DW, Fowler CC, Galan JE, Wang HW, Wolin SL. An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell. 2013;153:166–77.Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell. 2005;121:529–39.Reed JH, Gordon TP. Autoimmunity: Ro60-associated RNA takes its toll on disease pathogenesis. Nat Rev Rheumatol. 2016;12:136–8.Sim S, Weinberg DE, Fuchs G, Choi K, Chung J, Wolin SL. The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol Biol Cell. 2009;20:1555–64.Reed JH, Jackson MW, Gordon TP. A B cell apotope of Ro 60 in systemic lupus erythematosus. Arthritis Rheum. 2008;58:1125–9.Wolin SL, Reinisch KM. The Ro 60 kDa autoantigen comes into focus: interpreting epitope mapping experiments on the basis of structure. Autoimmun Rev. 2006;5:367–72.Routsias JG, Tzioufas AG. B-cell epitopes of the intracellular autoantigens Ro/SSA and La/SSB: tools to study the regulation of the autoimmune response. J Autoimmun. 2010;35:256–64.Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin a domains: widely dispersed domains with roles in cell adhesion and elsewere. Mol Bio Cell. 2002;13:3369–87.Lacy DB, Wigelsworth DJ, Scobie HM, Young JA, Collier RJ. Crystal structure of the von Willebrand factor a domain of human capillary morphogenesis protein 2: an anthrax toxin receptor. Proc Natl Acad Sci U S A. 2004;101:6367–72.O’Brien CA, Wolin SL. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 1994;8:2891–903.Chen X, Wolin SL. The Ro 60 autoantigen : insights into cellular function and role in autoimmunity. J Mol Med (Berl). 2004;82:232–9.Escorihuela J, González-Martínez MA, López-Paz JL, Puchades R, Maquieira A, Gimenez-Romero D. Dual-polarization interferometry: a novel technique to light up the nanomolecular world. Chem Rev. 2014;115:265–94.do Nascimento NM, Juste-Dolz A, Bueno PR, Monzó I, Tejero R, Lopez-Paz JL, et al. Mapping molecular binding by means of conformational dynamics measurements. RSC Adv. 2018;8:867–76.do Nascimento NM, Juste-Dolz A, Grau-García E, Román-Ivorra J, Puchades R, Maquieira A, et al. Label-free piezoelectric biosensor for prognosis and diagnosis of systemic lupus erythematosus. Biosens. Bioelectron. 2016;90:166–73.Seo MH, Park J, Kim E, Hohng S, Kim HS. Protein conformational dynamics dictate the binding affinity for a ligand. Nat Commun. 2014;5:3724.Lakshmanan RS, Efremov V, O’Donnell JS, Killard AJ. Measurement of the viscoelastic properties of blood plasma clot formation in response to tissue factor concentration-dependent activation. Anal Bioanal Chem. 2016;408:6581–8.Fakhrullin RF, Vinter VG, Zamaleeva AI, Matveeva MV, Kourbanov RA, Temesgen BK, et al. Quartz crystal microbalance immunosensor for the detection of antibodies to double-stranded DNA. Anal Bioanl Chem. 2007;388:367–75.Shen F, Rojas OJ, Genzer J, Gurgel PV, Carbonell RG. Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. Anal Bioanl Chem. 2015;408:1829–41.Fogarty AC, Laage D. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation. J Phys Chem B. 2014;118:7715–29.Born B, Kim SJ, Ebbinghaus S, Gruebelebc M, Havenith M. The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss. 2009;141:161–73.Yoshimi R, Ueda A, Ozato K, Ishigatsubo Y. Clinical and pathological roles of Ro/SSA autoantibody system. Clin Dev Immunol. 2012;2012:606195.Boire G, Gendron M, Monast N, Bastin B, Ménard HA. Purification of antigenically intact Ro ribonucleoproteins; biochemical and immunological evidence that the 52-kD protein is not a Ro protein. Clin Exp Immunol. 1995;100:489–98.Gazzaruso C, Montecucco CM, Geroldi D, Garzaniti A, Finardi G. Severe hypercalcemia and systemic lupus erythematosus. Joint Bone Spine. 2000;67:485–8.Hassan AB, Lundberg IE, Isenberg D, Wahren-Herlenius M. Serial analysis of Ro/SSA and La/SSB antibody levels and correlation with clinical disease activity in patients with systemic lupus erythematosus. Scand J Rheumatol. 2002;31:133–9.Huang RY, Chen G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem. 2014;406:6541–58.Yu F, Roy S, Arevalo E, Schaeck J, Wang J, Holte K, et al. Characterization of heparin-protein interaction by saturation transfer difference (STD) NMR. Anal Bioanal Chem. 2014;406:3079–89.Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86:369–408.Gaipl US, Kuhn A, Sheriff A, Munoz LE, Franz S, Voll RE, et al. Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun. 2006;9:173–87.Falati S, Edmead CE, Poole AW. Glycoprotein Ib-V-IX, a receptor for Von Willebrand factor, couples physically and functionally to the Fc receptor gamma-chain, Fyn, and Lyn to activate human platelets. Blood. 1999;94:1648–56.Muñoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 2010;6:280–9

    GWAS for Systemic Sclerosis Identifies Multiple Risk Loci and Highlights Fibrotic and Vasculopathy Pathways

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.Funding: This work was supported by Spanish Ministry of Economy and Competitiveness (grant ref. SAF2015-66761-P), Consejeria de Innovacion, Ciencia y Tecnologia, Junta de Andalucía (P12-BIO-1395), Ministerio de Educación, Cultura y Deporte through the program FPU, Juan de la Cierva fellowship (FJCI-2015-24028), Red de Investigación en Inflamación y Enfermadades Reumaticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013), and Scleroderma Research Foundation and NIH P50-HG007735 (to H.Y.C.). H.Y.C. is an Investigator of the Howard Hughes Medical Institute. PopGen 2.0 is supported by a grant from the German Ministry for Education and Research (01EY1103). M.D.M and S.A. are supported by grant DoD W81XWH-18-1-0423 and DoD W81XWH-16-1-0296, respectively

    Cross-disease Meta-analysis of Genome-wide Association Studies for Systemic Sclerosis and Rheumatoid Arthritis Reveals IRF4 as a New Common Susceptibility Locus

    Get PDF
    Objectives: Systemic sclerosis (SSc) and rheumatoid arthritis (RA) are autoimmune diseases that share clinical and immunological characteristics. To date, several shared SSc- RA loci have been identified independently. In this study, we aimed to systematically search for new common SSc-RA loci through an inter-disease meta-GWAS strategy. Methods: We performed a meta-analysis combining GWAS datasets of SSc and RA using a strategy that allowed identification of loci with both same-direction and opposingdirection allelic effects. The top single-nucleotide polymorphisms (SNPs) were followed-up in independent SSc and RA case-control cohorts. This allowed us to increase the sample size to a total of 8,830 SSc patients, 16,870 RA patients and 43,393 controls. Results: The cross-disease meta-analysis of the GWAS datasets identified several loci with nominal association signals (P-value < 5 x 10-6), which also showed evidence of association in the disease-specific GWAS scan. These loci included several genomic regions not previously reported as shared loci, besides risk factors associated with both diseases in previous studies. The follow-up of the putatively new SSc-RA loci identified IRF4 as a shared risk factor for these two diseases (Pcombined = 3.29 x 10-12). In addition, the analysis of the biological relevance of the known SSc-RA shared loci pointed to the type I interferon and the interleukin 12 signaling pathways as the main common etiopathogenic factors. Conclusions: Our study has identified a novel shared locus, IRF4, for SSc and RA and highlighted the usefulness of cross-disease GWAS meta-analysis in the identification of common risk loci

    Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), "A way of making Europe".Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals

    A cross-disease meta-GWAS identifies four new susceptibility loci shared between systemic sclerosis and Crohn’s disease

    Get PDF
    Abstract: Genome-wide association studies (GWASs) have identified a number of genetic risk loci associated with systemic sclerosis (SSc) and Crohn’s disease (CD), some of which confer susceptibility to both diseases. In order to identify new risk loci shared between these two immune-mediated disorders, we performed a cross-disease meta-analysis including GWAS data from 5,734 SSc patients, 4,588 CD patients and 14,568 controls of European origin. We identified 4 new loci shared between SSc and CD, IL12RB2, IRF1/SLC22A5, STAT3 and an intergenic locus at 6p21.31. Pleiotropic variants within these loci showed opposite allelic effects in the two analysed diseases and all of them showed a significant effect on gene expression. In addition, an enrichment in the IL-12 family and type I interferon signaling pathways was observed among the set of SSc-CD common genetic risk loci. In conclusion, through the first cross-disease meta-analysis of SSc and CD, we identified genetic variants with pleiotropic effects on two clinically distinct immune-mediated disorders. The fact that all these pleiotropic SNPs have opposite allelic effects in SSc and CD reveals the complexity of the molecular mechanisms by which polymorphisms affect diseases

    Health-related quality of life in patients with systemic lupus erythematosus: a Spanish study based on patient reports

    Full text link
    [EN] Introduction and objectivesSystemic lupus erythematosus (SLE) is a disease that significantly affects the quality of life and welfare of patients. SLE patients can be classified into multimorbidity levels using Clinical Risk Groups (CRGs) to help to incorporate predictive models of health needs. The goal of this study was to correlate CRGs with health-related quality of life (HR-QoL) and costs in SLE patients.MethodsA questionnaire was administered to SLE patients in four hospital centers of the Valencian Community (Spain) between October 2015 and March 2016. The factors studied included HR-QoL (EQ-5D-5L and VAS), disease activity (SLAI/SELENA), damage (SLICC/ACR), and severity (IGK).ResultsThe patients (N=190, 92.06% female, age (mean SD) 47.23 +/- 13.43years) were sorted according to health status in nine CRGs. We found that most SLE patients (>70%) were in CRGs 5 and 6. The main HR-QoL issues in these patients were related to mobility, ability to perform usual activities, and pain/discomfort. The scores (mean +/- SD) for EQ-5D-5L and VAS were 0.74 +/- 0.25 and 65.67 +/- 23.52, respectively. We found that the age of the patients negatively affected their HR-QoL (r=-0.266). SLE direct costs per patient increased with each CRG group, representing 71.92% of the total costs, while indirect costs were highly variable. The average cost per patient with SLE amounted to Euro8432.85 (year 2014).Conclusions Patients' quality of life is related with age, disease activity, damage, and severity. Age was the parameter which most affects HR-QoL. Most costs of SLE are concentrated in two CRGs in which the HR-QoL deteriorates sharply.The authors thank Francisco López de Saro (Trialance SCCL) for medical writing support.Román Ivorra, JA.; Fernández-Llanio-Comella, N.; San-Martín-Álvarez, A.; Vela-Casasempere, P.; Saurí-Ferrer, I.; González-De Julián, S.; Vivas-Consuelo, D. (2019). Health-related quality of life in patients with systemic lupus erythematosus: a Spanish study based on patient reports. Clinical Rheumatology. 38(7):1857-1864. https://doi.org/10.1007/s10067-019-04485-6S18571864387Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G, Hughes G (2016) Systemic lupus erythematosus. Nat Rev Dis Prim 2:16039. https://doi.org/10.1038/nrdp.2016.39Cervera R, Doria A, Amoura Z, Khamashta M, Schneider M, Guillemin F, Maurel F, Garofano A, Roset M, Perna A, Murray M, Schmitt C, Boucot I (2014) Patterns of systemic lupus erythematosus expression in Europe. Autoimmun Rev 13:621–629Seoane-Mato D, Sánchez-Piedra C, Díaz-González F, Bustabad S (2018) Prevalence of rheumatic diseases in the adult population in Spain. EPISER 2016 study. Ann Rheum Dis 77:535–536Cervera R, Rúa-Figueroa I, Gil-Aguado A, Sabio JM, Pallarés L, Hernández-Pastor LJ, Iglesias M (2013) Direct cost of management and treatment of active systemic lupus erythematosus and its flares in Spain: the LUCIE study. Rev Clínica Española 213:127–137. https://doi.org/10.1016/j.rce.2012.11.018Chambers SA, Allen E, Rahman A, Isenberg D (2009) Damage and mortality in a group of British patients with systemic lupus erythematosus followed up for over 10 years. Rheumatology 48:673–675. https://doi.org/10.1093/rheumatology/kep062Golder V, Hoi A (2017) Systemic lupus erythematosus: an update. Med J Aust 206:215–220. https://doi.org/10.5694/mja16.01229Waldheim E, Ajeganova S, Bergman S, Frostegård J, Welin E (2018) Variation in pain related to systemic lupus erythematosus (SLE): a 7-year follow-up study. Clin Rheumatol 37:1825–1834. https://doi.org/10.1007/s10067-018-4079-1Bexelius C, Wachtmeister K, Skare P, Jönsson L, Vollenhoven R (2013) Drivers of cost and health-related quality of life in patients with systemic lupus erythematosus (SLE): a Swedish nationwide study based on patient reports. Lupus 22:793–801. https://doi.org/10.1177/0961203313491849Holloway L, Humphrey L, Heron L, Pilling C, Kitchen H, Højbjerre L, Strandberg-Larsen M, Hansen BB (2014) Patient-reported outcome measures for systemic lupus erythematosus clinical trials: a review of content validity, face validity and psychometric performance. Health Qual Life Outcomes 12:116. https://doi.org/10.1186/s12955-014-0116-1Jolly M, Pickard AS, Block JA, Kumar RB, Mikolaitis RA, Wilke CT, Rodby RA, Fogg L, Sequeira W, Utset TO, Cash TF, Moldovan I, Katsaros E, Nicassio P, Ishimori ML, Kosinsky M, Merrill JT, Weisman MH, Wallace DJ (2012) Disease-specific patient reported outcome tools for systemic lupus erythematosus. YSARH 42:56–65. https://doi.org/10.1016/j.semarthrit.2011.12.005Doward LC, McKenna SP, Whalley D et al (2009) The development of the L-QoL: a quality-of-life instrument specific to systemic lupus erythematosus. Ann Rheum Dis 68:196–200. https://doi.org/10.1136/ard.2007.086009Yazdany J (2011) Health-related quality of life measurement in adult systemic lupus erythematosus: Lupus Quality of Life (LupusQoL), Systemic Lupus Erythematosus-Specific Quality of Life Questionnaire (SLEQOL), and Systemic Lupus Erythematosus Quality of Life Questionnaire. Arthritis Care Res (Hoboken) 63:S413–S419. https://doi.org/10.1002/acr.20636Cho JH, Chang SH, Shin NH, Choi BY, Oh HJ, Yoon MJ, Lee EY, Lee EB, Lee TJ, Song YW (2014) Costs of illness and quality of life in patients with systemic lupus erythematosus in South Korea. Lupus 23:949–957. https://doi.org/10.1177/0961203314524849Jones JT, Cunningham N, Kashikar-Zuck S, Brunner HI (2016) Pain, fatigue, and psychological impact on health-related quality of life in childhood-onset lupus. Arthritis Care Res 68:73–80. https://doi.org/10.1002/acr.22650Schmeding A, Schneider M (2013) Fatigue, health-related quality of life and other patient-reported outcomes in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 27:363–375. https://doi.org/10.1016/j.berh.2013.07.009Roche PA, Klestov AC, Heim HM (2003) Description of stable pain in rheumatoid arthritis: a 6-year study. J Rheumatol 30:1733–1738Katz JD, Senecal JL, Rivest C et al (1993) A simple severity of disease index for systemic lupus erythematosus. Lupus 2:119–123. https://doi.org/10.1177/096120339300200210Hughes J, Verill R, Eisenhandler J et al (2004) Clinical risk groups (CRGs): a classification system for risk-adjusted capitation-based payment and health care management. Med Care 42:81–90Vivas-Consuelo D, Usó-Talamantes R, Guadalajara-Olmeda N, Trillo-Mata JL, Sancho-Mestre C, Buigues-Pastor L (2014) Pharmaceutical cost management in an ambulatory setting using a risk adjustment tool. BMC Health Serv Res 14:462. https://doi.org/10.1186/1472-6963-14-462EuroQol Group (1990) EuroQol—a new facility for the measurement of health-related quality of life. Health Policy:10109801EuroQol Research (2015) EQ-5D-5L user guide. Basic Inf how to use EQ-5D-5L Instrum 28. doi: 1–25Isenberg DA, Allen E, Farewell V, D'Cruz D, Alarcon GS, Aranow C, Bruce IN, Dooley MA, Fortin PR, Ginzler EM, Gladman DD, Hanly JG, Inanc M, Kalunian K, Khamashta M, Merrill JT, Nived O, Petri M, Ramsey-Goldman R, Sturfelt G, Urowitz M, Wallace DJ, Gordon C, Rahman A (2011) An assessment of disease flare in patients with systemic lupus erythematosus: a comparison of BILAG 2004 and the flare version of SELENA. Ann Rheum Dis 70:54–59. https://doi.org/10.1136/ard.2010.132068Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH, Austin A, Bell A, Bloch DA, Corey PN, Decker JL, Esdaile J, Fries JF, Ginzler EM, Goldsmith CH, Hochberg MC, Jones JV, Riche NGHL, Liang MH, Lockshin MD, Muenz LR, Sackett DL, Schur PH (1992) Derivation of the sledai. A disease activity index for lupus patients. Arthritis Rheum 35:630–640. https://doi.org/10.1002/art.1780350606Gladman DD, Goldsmith CH, Urowitz MB, Bacon P, Fortin P, Ginzler E, Gordon C, Hanly JG, Isenberg DA, Petri M, Nived O, Snaith M, Sturfelt G (2000) The Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for systemic lupus erythematosus international comparison. J Rheumatol 27:373–376Lai JS, Beaumont JL, Jensen SE, Kaiser K, van Brunt DL, Kao AH, Chen SY (2017) An evaluation of health-related quality of life in patients with systemic lupus erythematosus using PROMIS and Neuro-QoL. Clin Rheumatol 36:555–562. https://doi.org/10.1007/s10067-016-3476-6Aggarwal R, Wilke CT, Pickard AS et al (2009) Psychometric properties of the EuroQol-5D and short form-6D in patients with systemic lupus erythematosus. J Rheumatol 36:1209–1216. https://doi.org/10.3899/jrheum.081022Carreras M, Ibern P, Coderch J, Sánchez I, Inoriza JM (2013) Estimating lifetime healthcare costs with morbidity data. BMC Health Serv Res 13:440. https://doi.org/10.1186/1472-6963-13-440Doria A, Amoura Z, Cervera R, Khamastha MA, Schneider M, Richter J, Guillemin F, Kobelt G, Maurel F, Garofano A, Perna A, Murray M, Schmitt C, Boucot I (2014) Annual direct medical cost of active systemic lupus erythematosus in five European countries. Ann Rheum Dis 73:154–160. https://doi.org/10.1136/annrheumdis-2012-202443Khamashta MA, Bruce IN, Gordon C, Isenberg DA, Ateka-Barrutia O, Gayed M, Donatti C, Guillermin AL, Foo J, Perna A (2014) The cost of care of systemic lupus erythematosus (SLE) in the UK: annual direct costs for adult SLE patients with active autoantibody-positive disease. Lupus 23:273–283. https://doi.org/10.1177/096120331351740
    corecore