136 research outputs found
Effect of ambient temperature during acute aerobic exercise on short-term appetite, energy intake, and plasma acylated ghrelin in recreationally active males
Ambient temperature during exercise may affect energy intake regulation. Compared with a temperate (20 °C) environment, 1 h of running followed by 6 h of rest tended to decrease energy intake from 2 ad libitum meals in a hot (30 °C) environment but increase energy intake in a cool (10 °C) environment (p = 0.08). Core temperature changes did not appear to mediate this trend; whether acylated ghrelin is involved is unclear. Further research is warranted to clarify these findings
The Acute Effects of Swimming on Appetite, Food Intake, and Plasma Acylated Ghrelin
Swimming may stimulate appetite and food intake but empirical data are lacking. This study examined appetite, food intake, and plasma acylated ghrelin responses to swimming. Fourteen healthy males completed a swimming trial and a control trial in a random order. Sixty min after breakfast participants swam for 60 min and then rested for six hours. Participants rested throughout the control trial. During trials appetite was measured at 30 min intervals and acylated ghrelin was assessed periodically (0, 1, 2, 3, 4, 6, and 7.5 h. N = 10). Appetite was suppressed during exercise before increasing in the hours after. Acylated ghrelin was suppressed during exercise. Swimming did not alter energy or macronutrient intake assessed at buffet meals (total trial energy intake: control 9161 kJ, swimming 9749 kJ). These findings suggest that swimming stimulates appetite but indicate that acylated ghrelin and food intake are resistant to change in the hours afterwards
Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions.
This study investigated the effects of continuous moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) in combination with short exposure to hypoxia on appetite and plasma concentrations of acylated ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Twelve healthy males completed four, 2.6 h trials in a random order: 1) MIE-normoxia, 2) MIE-hypoxia, 3) HIIE-normoxia, and 4) HIIE-hypoxia. Exercise took place in an environmental chamber. During MIE, participants ran for 50 min at 70% of altitude-specific maximal oxygen uptake ( 2max) and during HIIE performed 6 x 3 min running at 90% 2max interspersed with 6 x 3 min active recovery at 50% 2max with a 7 min warm-up and cool-down at 70% 2max (50 min total). In hypoxic trials, exercise was performed at a simulated altitude of 2,980 m (14.5% O2). Exercise was completed after a standardised breakfast. A second meal standardised to 30% of participants’ daily energy requirements was provided 45 min after exercise. Appetite was suppressed more in hypoxia than normoxia during exercise, post-exercise, and for the full 2.6 h trial period (linear mixed modelling, p 0.05). These findings demonstrate that short exposure to hypoxia causes suppressions in appetite and plasma acylated ghrelin concentrations. Furthermore, appetite responses to exercise do not appear to be influenced by exercise modality
Markers of fungal translocation are elevated during post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling
Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the mechanisms that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We did not observe a significant elevation in plasma markers of bacterial translocation during PASC. However, we observed higher levels of fungal translocation - measured as β-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared with those without PASC or SARS-CoV-2-negative controls. The higher β-glucan correlated with higher inflammation and elevated levels of host metabolites involved in activating N-methyl-d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neurotoxic properties. Mechanistically, β-glucan can directly induce inflammation by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC
Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males.
Purpose: To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods: In experiment one, twelve healthy women completed three 9 h trials (control, exercise-induced (Ex-Def) and food restriction induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90 min run, ~70% of VO2 max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7 h trials (control and exercise). Sixty min of running (~70% of VO2 max) was performed at the beginning of the exercise trial. Participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones and ad libitum energy intake were assessed during main trials. Results: In experiment one, an energy deficit of ~3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3-36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than control but energy intake did not differ between trials. The appetite, acylated ghrelin and energy intake response to exercise did not differ between men and women. Conclusions: Women exhibit compensatory appetite, gut hormone and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women appear to exhibit similar acylated ghrelin and PYY3-36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women
Low documentation of chronic kidney disease among high-risk patients in a managed care population: a retrospective cohort study
<p>Abstract</p> <p>Background</p> <p>Early detection of chronic kidney disease (CKD) is sub-optimal among the general population and among high risk patients. The prevalence and impact of major CKD risk factors, diabetes (DM) and hypertension (HTN), on CKD documentation among managed care populations have not been previously reported. We examined this issue in a Kaiser Permanente Georgia (KPG) CKD cohort.</p> <p>Methods</p> <p>KPG enrollees were included in the CKD cohort if they had eGFRs between 60 and 365 days apart that were <90 ml/min during 1999-2006. The current analysis is restricted to participants with eGFR 10-59 ml/min/1.73 m<sup>2</sup>. CKD documentation was defined as a presenting diagnosis of CKD by a primary care physician or nephrologist using ICD-9 event codes. The association between CKD documentation and DM and HTN were assessed with multivariate logistic regression models.</p> <p>Results</p> <p>Of the 50,438 subjects within the overall KPG CKD cohort, 20% (N = 10,266) were eligible for inclusion in the current analysis. Overall, CKD diagnosis documentation was low; only 14.4% of subjects had an event-based CKD diagnosis at baseline. Gender and types 2 diabetes interacted on CKD documentation. The prevalence of CKD documentation increased with the presence of hypertension and/or type 2 diabetes, but type 2 diabetes had a lower effect on CKD documentation. In multivariate analysis, significant predictors of CKD documentation were eGFR, hypertension, type 2 diabetes, congestive heart failure, peripheral artery disease, statin use, age and gender. CKD documentation was lower among women than similarly affected men.</p> <p>Conclusion</p> <p>Among patients with an eGFR 10-59, documentation of CKD diagnosis by primary and subspecialty providers is low within a managed care patient cohort. Gender disparities in CKD documentation observed in the general population were also present among KPG CKD enrollees.</p
Individual variation in hunger, energy intake and ghrelin responses to acute exercise
Purpose This study aimed to characterize the immediate and extended effect of acute exercise on hunger, energy intake, and circulating acylated ghrelin concentrations using a large data set of homogenous experimental trials and to describe the variation in responses between individuals.
Methods Data from 17 of our group's experimental crossover trials were aggregated yielding a total sample of 192 young, healthy males. In these studies, single bouts of moderate to high-intensity aerobic exercise (69% ± 5% V˙O2 peak; mean ± SD) were completed with detailed participant assessments occurring during and for several hours postexercise. Mean hunger ratings were determined during (n = 178) and after (n = 118) exercise from visual analog scales completed at 30-min intervals, whereas ad libitum energy intake was measured within the first hour after exercise (n = 60) and at multiple meals (n = 128) during the remainder of trials. Venous concentrations of acylated ghrelin were determined at strategic time points during (n = 118) and after (n = 89) exercise.
Results At group level, exercise transiently suppressed hunger (P < 0.010, Cohen's d = 0.77) but did not affect energy intake. Acylated ghrelin was suppressed during exercise (P < 0.001, Cohen's d = 0.10) and remained significantly lower than control (no exercise) afterward (P < 0.024, Cohen's d = 0.61). Between participants, there were notable differences in responses; however, a large proportion of this spread lay within the boundaries of normal variation associated with biological and technical assessment error.
Conclusion In young men, acute exercise suppresses hunger and circulating acylated ghrelin concentrations with notable diversity between individuals. Care must be taken to distinguish true interindividual variation from random differences within normal limits
Changes in appetite, energy intake, body composition and circulating ghrelin constituents during an incremental trekking ascent to high altitude
Purpose Circulating acylated ghrelin concentrations are associated with altitude-induced anorexia in laboratory environments, but have never been measured at terrestrial altitude. This study examined time course changes in appetite, energy intake, body composition, and ghrelin constituents during a high-altitude trek. Methods Twelve participants [age: 28(4) years, BMI 23.0(2.1) kg m−2] completed a 14-day trek in the Himalayas. Energy intake, appetite perceptions, body composition, and circulating acylated, des-acylated, and total ghrelin concentrations were assessed at baseline (113 m, 12 days prior to departure) and at three fixed research camps during the trek (3619 m, day 7; 4600 m, day 10; 5140 m, day 12). Results Relative to baseline, energy intake was lower at 3619 m (P = 0.038) and 5140 m (P = 0.016) and tended to be lower at 4600 m (P = 0.056). Appetite perceptions were lower at 5140 m (P = 0.027) compared with baseline. Acylated ghrelin concentrations were lower at 3619 m (P = 0.046) and 4600 m (P = 0.038), and tended to be lower at 5140 m (P = 0.070), compared with baseline. Des-acylated ghrelin concentrations did not significantly change during the trek (P = 0.177). Total ghrelin concentrations decreased from baseline to 4600 m (P = 0.045). Skinfold thickness was lower at all points during the trek compared with baseline (P ≤ 0.001) and calf girth decreased incrementally during the trek (P = 0.010). Conclusions Changes in plasma acylated and total ghrelin concentrations may contribute to the suppression of appetite and energy intake at altitude, but differences in the time course of these responses suggest that additional factors are also involved. Interventions are required to maintain appetite and energy balance during trekking at terrestrial altitudes
- …