94 research outputs found

    The role of positive selection in determining the molecular cause of species differences in disease

    Get PDF
    Related species, such as humans and chimpanzees, often experience the same disease with varying degrees of pathology, as seen in the cases of Alzheimer's disease, or differing symptomatology as in AIDS. Furthermore, certain diseases such as schizophrenia, epithelial cancers and autoimmune disorders are far more frequent in humans than in other species for reasons not associated with lifestyle. Genes that have undergone positive selection during species evolution are indicative of functional adaptations that drive species differences. Thus we investigate whether biomedical disease differences between species can be attributed to positively selected genes

    The GENCODE human gene set

    Get PDF
    This article is part of the supplement: Beyond the Genome: The true gene count, human evolution and disease genomics, Boston, MA, USA. 11-13 October 2010.The GENCODE consortium is a sub group of the ENCODE consortium. Its aim is to provide complete annotation of genes in the human genome including protein-coding loci, non-coding loci and pseudogenes, based on experimental evidence. The final aim is for the HAVANA team to manually annotate the complete genome. This is a time-consuming process which will be completed over the course of the ENCODE project. Currently, to provide a set of annotation covering the complete genome, rather than just the regions that have been manually annotated, a merge of manual annotation from HAVANA with automatic annotation from the Ensembl automatically annotated gene set is created. This process also adds unique full-length CDS predictions from the Ensembl protein coding set into manually annotated genes, to provide the most complete up to date annotation of the genome possible. Also included in the set are short and long ncRNA genes predicted by the Ensembl prediction pipelines and a consensus set of pseudogene predictions agreed between Havana, Yale and UCSC. The CCDS set is also fully represented within the GENCODE set. The GENCODE set is the default annotation available in Ensembl and is also available in the UCSC genome browser. All the annotation is tagged as to whether it is produced by manual annotation alone, automatic annotation alone, or by both approaches. We are currently working to provide confidence levels for annotation, based on depth and type of evidence supporting it

    Selection on Alleles Affecting Human Longevity and Late-Life Disease: The Example of Apolipoprotein E

    Get PDF
    It is often claimed that genes affecting health in old age, such as cardiovascular and Alzheimer diseases, are beyond the reach of natural selection. We show in a simulation study based on known genetic (apolipoprotein E) and non-genetic risk factors (gender, diet, smoking, alcohol, exercise) that, because there is a statistical distribution of ages at which these genes exert their influence on morbidity and mortality, the effects of selection are in fact non-negligible. A gradual increase with each generation of the ε2 and ε3 alleles of the gene at the expense of the ε4 allele was predicted from the model. The ε2 allele frequency was found to increase slightly more rapidly than that for ε3, although there was no statistically significant difference between the two. Our result may explain the recent evolutionary history of the epsilon 2, 3 and 4 alleles of the apolipoprotein E gene and has wider relevance for genes affecting human longevity

    Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements

    Get PDF
    The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Selection acting on genomes

    Get PDF
    C. K. is supported by a grant of the Vienna Science and Technology Fund (WWTF—MA016-061). M. A. receives funding from the Swiss National Science Foundation (grant 31003A_176316).Populations evolve as mutations arise in individual organisms and, through hereditary transmission, may become “fixed” (shared by all individuals) in the population. Most mutations are lethal or have negative fitness consequences for the organism. Others have essentially no effect on organismal fitness and can become fixed through the neutral stochastic process known as random drift. However, mutations may also produce a selective advantage that boosts their chances of reaching fixation. Regions of genomes where new mutations are beneficial, rather than neutral or deleterious, tend to evolve more rapidly due to positive selection. Genes involved in immunity and defense are a well-known example; rapid evolution in these genes presumably occurs because new mutations help organisms to prevail in evolutionary “arms races” with pathogens. In recent years genome-wide scans for selection have enlarged our understanding of the genome evolution of various species. In this chapter, we will focus on methods to detect selection on the genome. In particular, we will discuss probabilistic models and how they have changed with the advent of new genome-wide data now available.Publisher PD

    Sensitive and quantitative determination of short-chain fatty acids in human serum using liquid chromatography mass spectrometry

    Get PDF
    Short-chain fatty acids (SCFAs) are increasingly being monitored to elucidate the link between gut health and disease. These metabolites are routinely measured in faeces, but their determination in serum is more challenging due to their low concentrations. A method for the determination of eight SCFAs in serum is described here. High-resolution mass spectrometry and gas chromatography were used to identify the presence of isomeric interferences, which were then overcome through a combination of chromatographic separation and judicious choice of MS fragment ion. The SCFAs were derivatised to form 3-nitrophenylhydrazones before being separated on a reversed-phase column and then detected using liquid chromatography tandem mass spectrometry (LC-QQQ-MS). The LODs and LOQs of SCFAs using this method were in the range 1 to 7 ng mL−1 and 3 to 19 ng mL−1, respectively. The recovery of the SCFAs in serum ranged from 94 to 114% over the three concentration ranges tested

    Sequencing Bacillus anthracis Typing Phages Gamma and Cherry Reveals a Common Ancestry

    No full text
    The genetic relatedness of the Bacillus anthracis typing phages Gamma and Cherry was determined by nucleotide sequencing and comparative analysis. The genomes of these two phages were identical except at three variable loci, which showed heterogeneity within individual lysates and among Cherry, Wβ, Fah, and four Gamma bacteriophage sequences

    Molecular biology for green recovery-A call for action.

    No full text
    Molecular biology holds a vast potential for tackling climate change and biodiversity loss. Yet, it is largely absent from the current strategies. We call for a community-wide action to bring molecular biology to the forefront of climate change solutions

    Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1.

    Get PDF
    Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals
    corecore