16 research outputs found

    Practical Recommendations for Long-term Management of Modifiable Risks in Kidney and Liver Transplant Recipients

    Full text link

    Physical Activity in End-Stage Renal Disease Patients: The Effects of Starting Dialysis in the First 6 Months after the Transition Period

    No full text
    Objectives: Physical inactivity in end-stage renal disease (ESRD) patients is associated with increased mortality, and might be related to abnormalities in body composition (BC) and physical performance. It is uncertain to what extent starting dialysis influences the effects of ESRD on physical activity (PA). This study aimed to compare PA and physical performance between stage 5 chronic kidney disease (CKD-5) non-dialysis and dialysis patients, and healthy controls, to assess alterations in PA during the transition from CKD-5 non-dialysis to dialysis, and to relate PA to BC. Methods: For the cross-sectional analyses 44 CKD-5 non-dialysis patients, 29 dialysis patients, and 20 healthy controls were included. PA was measured by the SenseWear (TM) pro3. Also, the walking speed and handgrip strength (HGS) were measured. BC was measured by the Body Composition Monitor (c). Longitudinally, these parameters were assessed in 42 CKD-5 nondialysis patients (who were also part of the cross-sectional analysis), before the start of dialysis and 6 months thereafter. Results: PA was significantly lower in CKD-5 non-dialysis patients as compared to that in healthy controls but not as compared to that in dialysis patients. HGS was significantly lower in dialysis patients as compared to that in healthy controls. Walking speed was significantly lower in CKD-5 non-dialysis patients as compared to that in healthy controls but not as compared to that in dialysis patients. Six months after starting dialysis, activity related energy expenditure (AEE) and walking speed significantly increased. Conclusions: PA is already lower in CKD-5 non-dialysis patients as compared to that in healthy controls and does not differ from that of dialysis patients. However, the transition phase from CKD-5 non-dialysis to dialysis is associated only with a modest improvement in AEE. (C) 2017 The Author(s) Published by S. Karger AG, Basel</p

    Advanced glycation endproducts and dicarbonyls in end-stage renal disease:associations with uraemia and courses following renal replacement therapy

    No full text
    Background. End-stage renal disease (ESRD) is strongly associated with cardiovascular disease (CVD) risk. Advanced glycation endproducts (AGEs) and dicarbonyls, major precursors of AGEs, may contribute to the pathophysiology of CVD in ESRD. However, detailed data on the courses of AGEs and dicarbonyls during the transition of ESRD patients to renal replacement therapy are lacking. Methods. We quantified an extensive panel of free and protein-bound serum AGEs [N-is an element of-(carboxymethyl)lysine (CML), N-is an element of-(carboxyethyl)lysine (CEL), N-delta-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1)], serum dicarbonyls [glyoxal (GO), methylglyoxal (MGO), 3-deoxyglucosone (3-DG)] and tissue AGE accumulation [estimated by skin autofluorescence (SAF)] in a combined cross-sectional and longitudinal observational study of patients with ESRD transitioning to dialysis or kidney transplantation (KTx), prevalent dialysis patients and healthy controls. Cross-sectional comparisons were performed with linear regression analyses, and courses following renal replacement therapy were analysed with linear mixed models. Results. Free and protein-bound AGEs, dicarbonyls and SAF were higher in chronic kidney disease (CKD) Stage 5 non-dialysis (CKD 5-ND; n = 52) and CKD Stage 5 dialysis (CKD 5-D; n = 35) than in controls (n = 42). In addition, free AGEs, protein-bound CML, GO and SAF were even higher in CKD 5-D than in CKD5-ND. Similarly, following dialysis initiation (n = 43) free and protein-bound AGEs, and GO increased, whereas SAF remained similar. In contrast, following KTx (n = 21), free and protein-bound AGEs and dicarbonyls, but not SAF, markedly declined. Conclusions. AGEs and dicarbonyls accumulate in uraemia, which is even exaggerated by dialysis initiation. In contrast, KTx markedly reduces AGEs and dicarbonyls. Given their associations with CVD risk in high-risk populations, lowering AGE and dicarbonyl levels may be valuable

    Health-related quality of life in end-stage renal disease patients: the effects of starting dialysis in the first year after the transition period

    No full text
    International audienceBACKGROUND/AIMS:Prevalent dialysis patients have low scores of health-related quality of life (HRQOL) which are associated with increased risk of hospitalization and mortality. Also in CKD-5 non-dialysis patients, HRQOL scores seem to be lower as compared with the general population. This study firstly aimed to compare HRQOL between CKD-5 non-dialysis and prevalent dialysis patients in a cross-sectional analysis and to assess longitudinal changes over 1 year after the dialysis initiation. Secondly, the correlation between HRQOL and physical activity (PA) was explored.METHODS:Cross-sectional 44 CKD-5 non-dialysis, 29 prevalent dialysis, and 20 healthy controls were included. HRQOL was measured by Short Form-36 questionnaires to measure physical and mental domains of health expressed by the physical component summary (PCS) and mental component summary (MCS) scores. PA was measured by a SenseWear™ pro3. Longitudinally, HRQOL was assessed in 38 CKD-5 non-dialysis patients (who were also part of the cross-sectional analysis), before dialysis initiation until 1 year after dialysis initiation.RESULTS:PCS scores were significantly lower both in CKD-5 non-dialysis patients and in prevalent dialysis patients as compared with healthy controls (p < 0.001). MCS scores were significantly lower in both CKD-5 non-dialysis patients (p = 0.003), and in dialysis patients (p = 0.022), as compared with healthy controls. HRQOL scores did not change significantly from the CKD-5 non-dialysis phase into the first year after dialysis initiation. PA was significantly related to PCS in both CKD-5 non-dialysis patients (r = 0.580; p < 0.001), and dialysis patients (r = 0.476; p = 0.009).CONCLUSIONS:HRQOL is already low in the CKD-5 non-dialysis phase. In the first year after dialysis initiation, HRQOL did not change significantly. Given the correlation between PCS score and PA, physical activity programs may be potential tools to improve HRQOL in both CKD-5 non-dialysis as well as in prevalent dialysis patients

    Relations of advanced glycation endproducts and dicarbonyls with endothelial dysfunction and low-grade inflammation in individuals with end-stage renal disease in the transition to renal replacement therapy:A cross-sectional observational study

    No full text
    BackgroundCardiovascular disease (CVD) related mortality and morbidity are high in end-stage renal disease (ESRD). The pathophysiology of CVD in ESRD may involve non-traditional CVD risk factors, such as accumulation of advanced glycation endproducts (AGEs), dicarbonyls, endothelial dysfunction (ED) and low-grade inflammation (LGI). However, detailed data on the relation of AGEs and dicarbonyls with ED and LGI in ESRD are limited.MethodsWe examined cross-sectional Spearman's rank correlations of AGEs and dicarbonyls with serum biomarkers of ED and LGI in 43 individuals with chronic kidney disease (CKD) stage 5 not on dialysis (CKD5-ND). Free and protein-bound serum AGEs (N∈-(carboxymethyl)lysine (CML), N∈-(carboxyethyl)lysine (CEL), Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1)) and serum dicarbonyls (glyoxal, methylglyoxal, 3-deoxyglucosone) were analyzed with tandem mass spectrometry, and tissue AGE accumulation was estimated by skin autofluorescence (SAF). Further, serum biomarkers of ED and LGI included sVCAM-1, sE-selectin, sP-selectin, sThrombomodulin, sICAM-1, sICAM-3, hs-CRP, SAA, IL-6, IL-8 and TNF-α.ResultsAfter adjustment for age, sex and diabetes status, protein-bound CML was positively correlated with sVCAM-1; free CEL with sVCAM-1 and sThrombomodulin; glyoxal with sThrombomodulin; and methylglyoxal with sVCAM-1 (correlation coefficients ranged from 0.36 to 0.44). In addition, free CML was positively correlated with SAA; protein-bound CML with IL-6; free CEL with hs-CRP, SAA and IL-6; free MG-H1 with SAA; protein-bound MG-H1 with IL-6; and MGO with hs-CRP and IL-6 (correlation coefficients ranged from 0.33 to 0.38). Additional adjustment for eGFR attenuated partial correlations of serum AGEs and serum dicarbonyls with biomarkers of ED and LGI.ConclusionsIn individuals with CKD5-ND, higher levels of serum AGEs and serum dicarbonyls were related to biomarkers of ED and LGI after adjustment for age, sex and diabetes mellitus. Correlations were attenuated by eGFR, suggesting that eGFR confounds and/or mediates the relation of serum AGEs and dicarbonyls with ED and LGI
    corecore