402 research outputs found
Effective spin model for interband transport in a Wannier-Stark lattice system
We show that the interband dynamics in a tilted two-band Bose-Hubbard model
can be reduced to an analytically accessible spin model in the case of resonant
interband oscillations. This allows us to predict the revival time of these
oscillations which decay and revive due to inter-particle interactions. The
presented mapping onto the spin model and the so achieved reduction of
complexity has interesting perspectives for future studies of many-body
systems.Comment: 7 pages, 4 figure
The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots
Root-specific promoters are valuable tools for targeting transgene expression, but many of those already described have limitations to their general applicability. We present the expression characteristics of SlREO, a novel gene isolated from tomato (Solanum lycopersicum L.). This gene was highly expressed in roots but had a very low level of expression in aerial plant organs. A 2.4-kb region representing the SlREO promoter sequence was cloned upstream of the uidA GUS reporter gene and shown to direct expression in the root cortex. In mature, glasshouse-grown plants this strict root specificity was maintained. Furthermore, promoter activity was unaffected by dehydration or wounding stress but was somewhat suppressed by exposure to NaCl, salicylic acid and jasmonic acid. The predicted protein sequence of SlREO contains a domain found in enzymes of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. The novel SlREO promoter has properties ideal for applications requiring strong and specific gene expression in the bulk of tomato root tissue growing in soil, and is also likely to be useful in other Solanaceous crop
Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort
BACKGROUND:
Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice.
METHODS:
A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively.
RESULTS:
SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655.
CONCLUSIONS:
In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin
Solvable model of dissipative dynamics in the deep strong coupling regime
We describe the dynamics of a qubit interacting with a bosonic mode coupled
to a zero-temperature bath in the deep strong coupling (DSC) regime. We provide
an analytical solution for this open system dynamics in the off-resonance case
of the qubit-mode interaction. Collapses and revivals of parity chain
populations and the oscillatory behavior of the mean photon number are
predicted. At the same time, photon number wave packets, propagating back and
forth along parity chains, become incoherently mixed. Finally, we investigate
numerically the effect of detuning on the validity of the analytical solution.Comment: 6 pages, 8 figure
Functional and expression analysis of the metal-inducible dmeRF system from Rhizobium legumionosarum bv. viciae
A gene encoding a homolog to the cation diffusion facilitator protein DmeF from Cupriavidus metallidurans has been identified in the genome of Rhizobium leguminosarum UPM791. The R. leguminosarum dmeF gene is located downstream of an open reading frame (designated dmeR) encoding a protein homologous to the nickel- and cobalt-responsive transcriptional regulator RcnR from Escherichia coli. Analysis of gene expression showed that the R. leguminosarum dmeRF genes are organized as a transcriptional unit whose expression is strongly induced by nickel and cobalt ions, likely by alleviating the repressor activity of DmeR on dmeRF transcription. An R. leguminosarum dmeRF mutant strain displayed increased sensitivity to Co(II) and Ni(II), whereas no alterations of its resistance to Cd(II), Cu(II), or Zn(II) were observed. A decrease of symbiotic performance was observed when pea plants inoculated with an R. leguminosarum dmeRF deletion mutant strain were grown in the presence of high concentrations of nickel and cobalt. The same mutant induced significantly lower activity levels of NiFe hydrogenase in microaerobic cultures. These results indicate that the R. leguminosarum DmeRF system is a metal-responsive efflux mechanism acting as a key element for metal homeostasis in R. leguminosarum under free-living and symbiotic conditions. The presence of similar dmeRF gene clusters in other Rhizobiaceae suggests that the dmeRF system is a conserved mechanism for metal tolerance in legume endosymbiotic bacteria
Proteus mirabilis urease. Partial purification and inhibition by boric acid and boronic acids
Characterization of a Chromosomally Encoded 2,4-Dichlorophenoxyacetic Acid/a-Ketoglutarate Dioxygenase from \u3ci\u3eBurkholderia\u3c/i\u3e sp. Strain RASC
The findings of previous studies indicate that the genes required for metabolism of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) are typically encoded on broad-host-range plasmids. However, characterization of plasmid-cured strains of Burkholderia sp. strain RASC, as well as mutants obtained by transposon mutagenesis, suggested that the 2,4-D catabolic genes were located on the chromosome of this strain. Mutants of Burkholderia strain RASC unable to degrade 2,4-D (2,4-D- strains) were obtained by insertional inactivation with Tn5. One such mutant (d1) was shown to have Tn5 inserted in tfdARASC, which encodes 2,4-D/alpha-ketoglutarate dioxygenase. This is the first reported example of a chromosomally encoded tfdA. The tfdARASC gene was cloned from a library of wild-type Burkholderia strain RASC DNA and shown to express 2,4-D/alpha-ketoglutarate dioxygenase activity in Escherichia coli. The DNA sequence of the gene was determined and shown to be similar, although not identical, to those of isofunctional genes from other bacteria. Moreover, the gene product (TfdARASC) was purified and shown to be similar in molecular weight, amino-terminal sequence, and reaction mechanism to the canonical TfdA of Alcaligenes eutrophus JMP134. The data presented here indicate that tfdA genes can be found on the chromosome of some bacterial species and suggest that these catabolic genes are rather mobile and may be transferred by means other than conjugation
Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model
Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities
Impact of Safety-Related Dose Reductions or Discontinuations on Sustained Virologic Response in HCV-Infected Patients: Results from the GUARD-C Cohort.
BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced ≥1 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with ≥1 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not ≥5. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin.This study was sponsored by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Support for third-party writing
assistance for this manuscript, furnished by Blair Jarvis MSc, ELS, of Health Interactions, was provided by F. Hoffmann-La Roche Ltd, Basel, Switzerland
Dioxygen binding is controlled by the protein environment in non-heme FeII and 2-oxoglutarate oxygenases: a study on histone demethylase PHF8 and an ethylene-forming enzyme
Invited for the cover of this issue are Christo Z. Christov and co-workers at Michigan Technological University, University of Oxford, and Michigan State University. The image depicts the oxygen diffusion channel in class 7 histone demethylase (PHF8) and ethylene-forming enzyme (EFE) and changes in the enzymes’ conformations upon binding. Read the full text of the article at 10.1002/chem.202300138
- …
